Commit 44b18f4d by Robbert Krebbers

### Shorter names for common math notions.

`Also do some minor clean up.`
parent 7ebc1859
 ... @@ -514,71 +514,71 @@ Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch. ... @@ -514,71 +514,71 @@ Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch. (** ** Common properties *) (** ** Common properties *) (** These operational type classes allow us to refer to common mathematical (** These operational type classes allow us to refer to common mathematical properties in a generic way. For example, for injectivity of [(k ++)] it properties in a generic way. For example, for injectivity of [(k ++)] it allows us to write [injective (k ++)] instead of [app_inv_head k]. *) allows us to write [inj (k ++)] instead of [app_inv_head k]. *) Class Injective {A B} (R : relation A) (S : relation B) (f : A → B) : Prop := Class Inj {A B} (R : relation A) (S : relation B) (f : A → B) : Prop := injective: ∀ x y, S (f x) (f y) → R x y. inj x y : S (f x) (f y) → R x y. Class Injective2 {A B C} (R1 : relation A) (R2 : relation B) Class Inj2 {A B C} (R1 : relation A) (R2 : relation B) (S : relation C) (f : A → B → C) : Prop := (S : relation C) (f : A → B → C) : Prop := injective2: ∀ x1 x2 y1 y2, S (f x1 x2) (f y1 y2) → R1 x1 y1 ∧ R2 x2 y2. inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2) → R1 x1 y1 ∧ R2 x2 y2. Class Cancel {A B} (S : relation B) (f : A → B) (g : B → A) : Prop := Class Cancel {A B} (S : relation B) (f : A → B) (g : B → A) : Prop := cancel: ∀ x, S (f (g x)) x. cancel : ∀ x, S (f (g x)) x. Class Surjective {A B} (R : relation B) (f : A → B) := Class Surj {A B} (R : relation B) (f : A → B) := surjective : ∀ y, ∃ x, R (f x) y. surj y : ∃ x, R (f x) y. Class Idempotent {A} (R : relation A) (f : A → A → A) : Prop := Class IdemP {A} (R : relation A) (f : A → A → A) : Prop := idempotent: ∀ x, R (f x x) x. idemp x : R (f x x) x. Class Commutative {A B} (R : relation A) (f : B → B → A) : Prop := Class Comm {A B} (R : relation A) (f : B → B → A) : Prop := commutative: ∀ x y, R (f x y) (f y x). comm x y : R (f x y) (f y x). Class LeftId {A} (R : relation A) (i : A) (f : A → A → A) : Prop := Class LeftId {A} (R : relation A) (i : A) (f : A → A → A) : Prop := left_id: ∀ x, R (f i x) x. left_id x : R (f i x) x. Class RightId {A} (R : relation A) (i : A) (f : A → A → A) : Prop := Class RightId {A} (R : relation A) (i : A) (f : A → A → A) : Prop := right_id: ∀ x, R (f x i) x. right_id x : R (f x i) x. Class Associative {A} (R : relation A) (f : A → A → A) : Prop := Class Assoc {A} (R : relation A) (f : A → A → A) : Prop := associative: ∀ x y z, R (f x (f y z)) (f (f x y) z). assoc x y z : R (f x (f y z)) (f (f x y) z). Class LeftAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop := Class LeftAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop := left_absorb: ∀ x, R (f i x) i. left_absorb x : R (f i x) i. Class RightAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop := Class RightAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop := right_absorb: ∀ x, R (f x i) i. right_absorb x : R (f x i) i. Class AntiSymmetric {A} (R S : relation A) : Prop := Class AntiSymm {A} (R S : relation A) : Prop := anti_symmetric: ∀ x y, S x y → S y x → R x y. anti_symm x y : S x y → S y x → R x y. Class Total {A} (R : relation A) := total x y : R x y ∨ R y x. Class Total {A} (R : relation A) := total x y : R x y ∨ R y x. Class Trichotomy {A} (R : relation A) := Class Trichotomy {A} (R : relation A) := trichotomy : ∀ x y, R x y ∨ x = y ∨ R y x. trichotomy x y : R x y ∨ x = y ∨ R y x. Class TrichotomyT {A} (R : relation A) := Class TrichotomyT {A} (R : relation A) := trichotomyT : ∀ x y, {R x y} + {x = y} + {R y x}. trichotomyT x y : {R x y} + {x = y} + {R y x}. Arguments irreflexivity {_} _ {_} _ _. Arguments irreflexivity {_} _ {_} _ _. Arguments injective {_ _ _ _} _ {_} _ _ _. Arguments inj {_ _ _ _} _ {_} _ _ _. Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _. Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _. Arguments cancel {_ _ _} _ _ {_} _. Arguments cancel {_ _ _} _ _ {_} _. Arguments surjective {_ _ _} _ {_} _. Arguments surj {_ _ _} _ {_} _. Arguments idempotent {_ _} _ {_} _. Arguments idemp {_ _} _ {_} _. Arguments commutative {_ _ _} _ {_} _ _. Arguments comm {_ _ _} _ {_} _ _. Arguments left_id {_ _} _ _ {_} _. Arguments left_id {_ _} _ _ {_} _. Arguments right_id {_ _} _ _ {_} _. Arguments right_id {_ _} _ _ {_} _. Arguments associative {_ _} _ {_} _ _ _. Arguments assoc {_ _} _ {_} _ _ _. Arguments left_absorb {_ _} _ _ {_} _. Arguments left_absorb {_ _} _ _ {_} _. Arguments right_absorb {_ _} _ _ {_} _. Arguments right_absorb {_ _} _ _ {_} _. Arguments anti_symmetric {_ _} _ {_} _ _ _ _. Arguments anti_symm {_ _} _ {_} _ _ _ _. Arguments total {_} _ {_} _ _. Arguments total {_} _ {_} _ _. Arguments trichotomy {_} _ {_} _ _. Arguments trichotomy {_} _ {_} _ _. Arguments trichotomyT {_} _ {_} _ _. Arguments trichotomyT {_} _ {_} _ _. Instance id_injective {A} : Injective (=) (=) (@id A). Instance id_inj {A} : Inj (=) (=) (@id A). Proof. intros ??; auto. Qed. Proof. intros ??; auto. Qed. (** The following lemmas are specific versions of the projections of the above (** The following lemmas are specific versions of the projections of the above type classes for Leibniz equality. These lemmas allow us to enforce Coq not to type classes for Leibniz equality. These lemmas allow us to enforce Coq not to use the setoid rewriting mechanism. *) use the setoid rewriting mechanism. *) Lemma idempotent_L {A} (f : A → A → A) `{!Idempotent (=) f} x : f x x = x. Lemma idemp_L {A} (f : A → A → A) `{!IdemP (=) f} x : f x x = x. Proof. auto. Qed. Proof. auto. Qed. Lemma commutative_L {A B} (f : B → B → A) `{!Commutative (=) f} x y : Lemma comm_L {A B} (f : B → B → A) `{!Comm (=) f} x y : f x y = f y x. f x y = f y x. Proof. auto. Qed. Proof. auto. Qed. Lemma left_id_L {A} (i : A) (f : A → A → A) `{!LeftId (=) i f} x : f i x = x. Lemma left_id_L {A} (i : A) (f : A → A → A) `{!LeftId (=) i f} x : f i x = x. Proof. auto. Qed. Proof. auto. Qed. Lemma right_id_L {A} (i : A) (f : A → A → A) `{!RightId (=) i f} x : f x i = x. Lemma right_id_L {A} (i : A) (f : A → A → A) `{!RightId (=) i f} x : f x i = x. Proof. auto. Qed. Proof. auto. Qed. Lemma associative_L {A} (f : A → A → A) `{!Associative (=) f} x y z : Lemma assoc_L {A} (f : A → A → A) `{!Assoc (=) f} x y z : f x (f y z) = f (f x y) z. f x (f y z) = f (f x y) z. Proof. auto. Qed. Proof. auto. Qed. Lemma left_absorb_L {A} (i : A) (f : A → A → A) `{!LeftAbsorb (=) i f} x : Lemma left_absorb_L {A} (i : A) (f : A → A → A) `{!LeftAbsorb (=) i f} x : ... @@ -593,7 +593,7 @@ Proof. auto. Qed. ... @@ -593,7 +593,7 @@ Proof. auto. Qed. relation [R] instead of [⊆] to support multiple orders on the same type. *) relation [R] instead of [⊆] to support multiple orders on the same type. *) Class PartialOrder {A} (R : relation A) : Prop := { Class PartialOrder {A} (R : relation A) : Prop := { partial_order_pre :> PreOrder R; partial_order_pre :> PreOrder R; partial_order_anti_symmetric :> AntiSymmetric (=) R partial_order_anti_symm :> AntiSymm (=) R }. }. Class TotalOrder {A} (R : relation A) : Prop := { Class TotalOrder {A} (R : relation A) : Prop := { total_order_partial :> PartialOrder R; total_order_partial :> PartialOrder R; ... @@ -746,31 +746,17 @@ Proof. intuition. Qed. ... @@ -746,31 +746,17 @@ Proof. intuition. Qed. Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y ↔ R y x. Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y ↔ R y x. Proof. intuition. Qed. Proof. intuition. Qed. (** ** Pointwise relations *) (** These instances are in Coq trunk since revision 15455, but are not in Coq 8.4 yet. *) Instance pointwise_reflexive {A} `{R : relation B} : Reflexive R → Reflexive (pointwise_relation A R) | 9. Proof. firstorder. Qed. Instance pointwise_symmetric {A} `{R : relation B} : Symmetric R → Symmetric (pointwise_relation A R) | 9. Proof. firstorder. Qed. Instance pointwise_transitive {A} `{R : relation B} : Transitive R → Transitive (pointwise_relation A R) | 9. Proof. firstorder. Qed. (** ** Unit *) (** ** Unit *) Instance unit_equiv : Equiv unit := λ _ _, True. Instance unit_equiv : Equiv unit := λ _ _, True. Instance unit_equivalence : Equivalence (@equiv unit _). Instance unit_equivalence : Equivalence (@equiv unit _). Proof. repeat split. Qed. Proof. repeat split. Qed. (** ** Products *) (** ** Products *) Instance prod_map_injective {A A' B B'} (f : A → A') (g : B → B') : Instance prod_map_inj {A A' B B'} (f : A → A') (g : B → B') : Injective (=) (=) f → Injective (=) (=) g → Inj (=) (=) f → Inj (=) (=) g → Inj (=) (=) (prod_map f g). Injective (=) (=) (prod_map f g). Proof. Proof. intros ?? [??] [??] ?; simpl in *; f_equal; intros ?? [??] [??] ?; simpl in *; f_equal; [apply (injective f)|apply (injective g)]; congruence. [apply (inj f)|apply (inj g)]; congruence. Qed. Qed. Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) : Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) : ... @@ -815,17 +801,17 @@ Lemma and_wlog_l (P Q : Prop) : (Q → P) → Q → (P ∧ Q). ... @@ -815,17 +801,17 @@ Lemma and_wlog_l (P Q : Prop) : (Q → P) → Q → (P ∧ Q). Proof. tauto. Qed. Proof. tauto. Qed. Lemma and_wlog_r (P Q : Prop) : P → (P → Q) → (P ∧ Q). Lemma and_wlog_r (P Q : Prop) : P → (P → Q) → (P ∧ Q). Proof. tauto. Qed. Proof. tauto. Qed. Instance: ∀ A B (x : B), Commutative (=) (λ _ _ : A, x). Instance: ∀ A B (x : B), Comm (=) (λ _ _ : A, x). Proof. red. trivial. Qed. Proof. red. trivial. Qed. Instance: ∀ A (x : A), Associative (=) (λ _ _ : A, x). Instance: ∀ A (x : A), Assoc (=) (λ _ _ : A, x). Proof. red. trivial. Qed. Proof. red. trivial. Qed. Instance: ∀ A, Associative (=) (λ x _ : A, x). Instance: ∀ A, Assoc (=) (λ x _ : A, x). Proof. red. trivial. Qed. Proof. red. trivial. Qed. Instance: ∀ A, Associative (=) (λ _ x : A, x). Instance: ∀ A, Assoc (=) (λ _ x : A, x). Proof. red. trivial. Qed. Proof. red. trivial. Qed. Instance: ∀ A, Idempotent (=) (λ x _ : A, x). Instance: ∀ A, IdemP (=) (λ x _ : A, x). Proof. red. trivial. Qed. Proof. red. trivial. Qed. Instance: ∀ A, Idempotent (=) (λ _ x : A, x). Instance: ∀ A, IdemP (=) (λ _ x : A, x). Proof. red. trivial. Qed. Proof. red. trivial. Qed. Instance left_id_propholds {A} (R : relation A) i f : Instance left_id_propholds {A} (R : relation A) i f : ... @@ -841,7 +827,7 @@ Instance right_absorb_propholds {A} (R : relation A) i f : ... @@ -841,7 +827,7 @@ Instance right_absorb_propholds {A} (R : relation A) i f : RightAbsorb R i f → ∀ x, PropHolds (R (f x i) i). RightAbsorb R i f → ∀ x, PropHolds (R (f x i) i). Proof. red. trivial. Qed. Proof. red. trivial. Qed. Instance idem_propholds {A} (R : relation A) f : Instance idem_propholds {A} (R : relation A) f : Idempotent R f → ∀ x, PropHolds (R (f x x) x). IdemP R f → ∀ x, PropHolds (R (f x x) x). Proof. red. trivial. Qed. Proof. red. trivial. Qed. Instance: ∀ `{R1 : relation A, R2 : relation B} (x : B), Instance: ∀ `{R1 : relation A, R2 : relation B} (x : B), ... @@ -849,47 +835,47 @@ Instance: ∀ `{R1 : relation A, R2 : relation B} (x : B), ... @@ -849,47 +835,47 @@ Instance: ∀ `{R1 : relation A, R2 : relation B} (x : B), Proof. intros A R1 B R2 x ? y1 y2; reflexivity. Qed. Proof. intros A R1 B R2 x ? y1 y2; reflexivity. Qed. Instance: @PreOrder A (=). Instance: @PreOrder A (=). Proof. split; repeat intro; congruence. Qed. Proof. split; repeat intro; congruence. Qed. Lemma injective_iff {A B} {R : relation A} {S : relation B} (f : A → B) Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A → B) `{!Injective R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y) ↔ R x y. `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y) ↔ R x y. Proof. firstorder. Qed. Proof. firstorder. Qed. Instance: Injective (=) (=) (@inl A B). Instance: Inj (=) (=) (@inl A B). Proof. injection 1; auto. Qed. Proof. injection 1; auto. Qed. Instance: Injective (=) (=) (@inr A B). Instance: Inj (=) (=) (@inr A B). Proof. injection 1; auto. Qed. Proof. injection 1; auto. Qed. Instance: Injective2 (=) (=) (=) (@pair A B). Instance: Inj2 (=) (=) (=) (@pair A B). Proof. injection 1; auto. Qed. Proof. injection 1; auto. Qed. Instance: ∀ `{Injective2 A B C R1 R2 R3 f} y, Injective R1 R3 (λ x, f x y). Instance: ∀ `{Inj2 A B C R1 R2 R3 f} y, Inj R1 R3 (λ x, f x y). Proof. repeat intro; edestruct (injective2 f); eauto. Qed. Proof. repeat intro; edestruct (inj2 f); eauto. Qed. Instance: ∀ `{Injective2 A B C R1 R2 R3 f} x, Injective R2 R3 (f x). Instance: ∀ `{Inj2 A B C R1 R2 R3 f} x, Inj R2 R3 (f x). Proof. repeat intro; edestruct (injective2 f); eauto. Qed. Proof. repeat intro; edestruct (inj2 f); eauto. Qed. Lemma cancel_injective `{Cancel A B R1 f g} Lemma cancel_inj `{Cancel A B R1 f g} `{!Equivalence R1} `{!Proper (R2 ==> R1) f} : Injective R1 R2 g. `{!Equivalence R1} `{!Proper (R2 ==> R1) f} : Inj R1 R2 g. Proof. Proof. intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity. intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity. Qed. Qed. Lemma cancel_surjective `{Cancel A B R1 f g} : Surjective R1 f. Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f. Proof. intros y. exists (g y). auto. Qed. Proof. intros y. exists (g y). auto. Qed. Lemma impl_transitive (P Q R : Prop) : (P → Q) → (Q → R) → (P → R). Lemma impl_transitive (P Q R : Prop) : (P → Q) → (Q → R) → (P → R). Proof. tauto. Qed. Proof. tauto. Qed. Instance: Commutative (↔) (@eq A). Instance: Comm (↔) (@eq A). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance: Commutative (↔) (λ x y, @eq A y x). Instance: Comm (↔) (λ x y, @eq A y x). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance: Commutative (↔) (↔). Instance: Comm (↔) (↔). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance: Commutative (↔) (∧). Instance: Comm (↔) (∧). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance: Associative (↔) (∧). Instance: Assoc (↔) (∧). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance: Idempotent (↔) (∧). Instance: IdemP (↔) (∧). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance: Commutative (↔) (∨). Instance: Comm (↔) (∨). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance: Associative (↔) (∨). Instance: Assoc (↔) (∨). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance: Idempotent (↔) (∨). Instance: IdemP (↔) (∨). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance: LeftId (↔) True (∧). Instance: LeftId (↔) True (∧). Proof. red; intuition. Qed. Proof. red; intuition. Qed. ... @@ -911,26 +897,26 @@ Instance: LeftId (↔) True impl. ... @@ -911,26 +897,26 @@ Instance: LeftId (↔) True impl. Proof. unfold impl. red; intuition. Qed. Proof. unfold impl. red; intuition. Qed. Instance: RightAbsorb (↔) True impl. Instance: RightAbsorb (↔) True impl. Proof. unfold impl. red; intuition. Qed. Proof. unfold impl. red; intuition. Qed. Lemma not_injective `{Injective A B R R' f} x y : ¬R x y → ¬R' (f x) (f y). Lemma not_inj `{Inj A B R R' f} x y : ¬R x y → ¬R' (f x) (f y). Proof. intuition. Qed. Proof. intuition. Qed. Instance injective_compose {A B C} R1 R2 R3 (f : A → B) (g : B → C) : Instance inj_compose {A B C} R1 R2 R3 (f : A → B) (g : B → C) : Injective R1 R2 f → Injective R2 R3 g → Injective R1 R3 (g ∘ f). Inj R1 R2 f → Inj R2 R3 g → Inj R1 R3 (g ∘ f). Proof. red; intuition. Qed. Proof. red; intuition. Qed. Instance surjective_compose {A B C} R (f : A → B) (g : B → C) : Instance surj_compose {A B C} R (f : A → B) (g : B → C) : Surjective (=) f → Surjective R g → Surjective R (g ∘ f). Surj (=) f → Surj R g → Surj R (g ∘ f). Proof. Proof. intros ?? x. unfold compose. destruct (surjective g x) as [y ?]. intros ?? x. unfold compose. destruct (surj g x) as [y ?]. destruct (surjective f y) as [z ?]. exists z. congruence. destruct (surj f y) as [z ?]. exists z. congruence. Qed. Qed. Section sig_map. Section sig_map. Context `{P : A → Prop} `{Q : B → Prop} (f : A → B) (Hf : ∀ x, P x → Q (f x)). Context `{P : A → Prop} `{Q : B → Prop} (f : A → B) (Hf : ∀ x, P x → Q (f x)). Definition sig_map (x : sig P) : sig Q := f (`x) ↾ Hf _ (proj2_sig x). Definition sig_map (x : sig P) : sig Q := f (`x) ↾ Hf _ (proj2_sig x). Global Instance sig_map_injective: Global Instance sig_map_inj: (∀ x, ProofIrrel (P x)) → Injective (=) (=) f → Injective (=) (=) sig_map. (∀ x, ProofIrrel (P x)) → Inj (=) (=) f → Inj (=) (=) sig_map. Proof. Proof. intros ?? [x Hx] [y Hy]. injection 1. intros Hxy. intros ?? [x Hx] [y Hy]. injection 1. intros Hxy. apply (injective f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto. apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto. Qed. Qed. End sig_map. End sig_map. Arguments sig_map _ _ _ _ _ _ !_ /. Arguments sig_map _ _ _ _ _ _ !_ /.
 ... @@ -15,13 +15,13 @@ Definition encode_nat `{Countable A} (x : A) : nat := ... @@ -15,13 +15,13 @@ Definition encode_nat `{Countable A} (x : A) : nat := pred (Pos.to_nat (encode x)). pred (Pos.to_nat (encode x)). Definition decode_nat `{Countable A} (i : nat) : option A := Definition decode_nat `{Countable A} (i : nat) : option A := decode (Pos.of_nat (S i)). decode (Pos.of_nat (S i)). Instance encode_injective `{Countable A} : Injective (=) (=) encode. Instance encode_inj `{Countable A} : Inj (=) (=) encode. Proof. Proof. intros x y Hxy; apply (injective Some). intros x y Hxy; apply (inj Some). by rewrite <-(decode_encode x), Hxy, decode_encode. by rewrite <-(decode_encode x), Hxy, decode_encode. Qed. Qed. Instance encode_nat_injective `{Countable A} : Injective (=) (=) encode_nat. Instance encode_nat_inj `{Countable A} : Inj (=) (=) encode_nat. Proof. unfold encode_nat; intros x y Hxy; apply (injective encode); lia. Qed. Proof. unfold encode_nat; intros x y Hxy; apply (inj encode); lia. Qed. Lemma decode_encode_nat `{Countable A} x : decode_nat (encode_nat x) = Some x. Lemma decode_encode_nat `{Countable A} x : decode_nat (encode_nat x) = Some x. Proof. Proof. pose proof (Pos2Nat.is_pos (encode x)). pose proof (Pos2Nat.is_pos (encode x)). ... @@ -70,11 +70,11 @@ Section choice. ... @@ -70,11 +70,11 @@ Section choice. Definition choice (HA : ∃ x, P x) : { x | P x } := _↾choose_correct HA. Definition choice (HA : ∃ x, P x) : { x | P x } := _↾choose_correct HA. End choice. End choice. Lemma surjective_cancel `{Countable A} `{∀ x y : B, Decision (x = y)} Lemma surj_cancel `{Countable A} `{∀ x y : B, Decision (x = y)} (f : A → B) `{!Surjective (=) f} : { g : B → A & Cancel (=) f g }. (f : A → B) `{!Surj (=) f} : { g : B → A & Cancel (=) f g }. Proof. Proof. exists (λ y, choose (λ x, f x = y) (surjective f y)). exists (λ y, choose (λ x, f x = y) (surj f y)). intros y. by rewrite (choose_correct (λ x, f x = y) (surjective f y)). intros y. by rewrite (choose_correct (λ x, f x = y) (surj f y)). Qed. Qed. (** * Instances *) (** * Instances *) ... @@ -197,7 +197,7 @@ Lemma list_encode_app' `{Countable A} (l1 l2 : list A) acc : ... @@ -197,7 +197,7 @@ Lemma list_encode_app' `{Countable A} (l1 l2 : list A) acc : Proof. Proof. revert acc; induction l1; simpl; auto. revert acc; induction l1; simpl; auto. induction l2 as [|x l IH]; intros acc; simpl; [by rewrite ?(left_id_L _ _)|]. induction l2 as [|x l IH]; intros acc; simpl; [by rewrite ?(left_id_L _ _)|]. by rewrite !(IH (Nat.iter _ _ _)), (associative_L _), x0_iter_x1. by rewrite !(IH (Nat.iter _ _ _)), (assoc_L _), x0_iter_x1. Qed. Qed. Program Instance list_countable `{Countable A} : Countable (list A) := Program Instance list_countable `{Countable A} : Countable (list A) := {| encode := list_encode 1; decode := list_decode [] 0 |}. {| encode := list_encode 1; decode := list_decode [] 0 |}. ... @@ -211,7 +211,7 @@ Next Obligation. ... @@ -211,7 +211,7 @@ Next Obligation. { by intros help l; rewrite help, (right_id_L _ _). } { by intros help l; rewrite help, (right_id_L _ _). } induction l as [|x l IH] using @rev_ind; intros acc; [done|]. induction l as [|x l IH] using @rev_ind; intros acc; [done|]. rewrite list_encode_app'; simpl; rewrite <-x0_iter_x1, decode_iter; simpl. rewrite list_encode_app'; simpl; rewrite <-x0_iter_x1, decode_iter; simpl. by rewrite decode_encode_nat; simpl; rewrite IH, <-(associative_L _). by rewrite decode_encode_nat; simpl; rewrite IH, <-(assoc_L _). Qed. Qed. Lemma list_encode_app `{Countable A} (l1 l2 : list A) : Lemma list_encode_app `{Countable A} (l1 l2 : list A) : encode (l1 ++ l2)%list = encode l1 ++ encode l2. encode (l1 ++ l2)%list = encode l1 ++ encode l2. ... ...
 ... @@ -12,7 +12,7 @@ Proof. firstorder. Qed. ... @@ -12,7 +12,7 @@ Proof. firstorder. Qed. Lemma Is_true_reflect (b : bool) : reflect b b. Lemma Is_true_reflect (b : bool) : reflect b b. Proof. destruct b. by left. right. intros []. Qed. Proof. destruct b. by left. right. intros []. Qed. Instance: Injective (=) (↔) Is_true. Instance: Inj (=) (↔) Is_true. Proof. intros [] []; simpl; intuition. Qed. Proof. intros [] []; simpl; intuition. Qed. (** We introduce [decide_rel] to avoid inefficienct computation due to eager (** We introduce [decide_rel] to avoid inefficienct computation due to eager ... ...
 ... @@ -47,7 +47,7 @@ Lemma error_fmap_bind {S E A B C} (f : A → B) (g : B → error S E C) x s : ... @@ -47,7 +47,7 @@ Lemma error_fmap_bind {S E A B C} (f : A → B) (g : B → error S E C) x s : ((f <\$> x) ≫= g) s = (x ≫= g ∘ f) s. ((f <\$> x) ≫= g) s = (x ≫= g ∘ f) s. Proof. by compute; destruct (x s) as [|[??]]. Qed. Proof. by compute; destruct (x s) as [|[??]]. Qed. Lemma error_associative {S E A B C} (f : A → error S E B) (g : B → error S E C) x s : Lemma error_assoc {S E A B C} (f : A → error S E B) (g : B → error S E C) x s : ((x ≫= f) ≫= g) s = (a ← x; f a ≫= g) s. ((x ≫= f) ≫= g) s = (a ← x; f a ≫= g) s. Proof. by compute; destruct (x s) as [|[??]]. Qed. Proof. by compute; destruct (x s) as [|[??]]. Qed. Lemma error_of_option_bind {S E A B} (f : A → option B) o e : Lemma error_of_option_bind {S E A B} (f : A → option B) o e : ... @@ -114,7 +114,7 @@ Tactic Notation "error_proceed" := ... @@ -114,7 +114,7 @@ Tactic Notation "error_proceed" := | H : (gets _ ≫= _) _ = _ |- _ => rewrite error_left_gets in H | H : (gets _ ≫= _) _ = _ |- _ => rewrite error_left_gets in H | H : (modify _ ≫= _) _ = _ |- _ => rewrite error_left_modify in H | H : (modify _ ≫= _) _ = _ |- _ => rewrite error_left_modify in H | H : ((_ <\$> _) ≫= _) _ = _ |- _ => rewrite error_fmap_bind in H | H : ((_ <\$> _) ≫= _) _ = _ |- _ => rewrite error_fmap_bind in H | H : ((_ ≫= _) ≫= _) _ = _ |- _ => rewrite error_associative in H | H : ((_ ≫= _) ≫= _) _ = _ |- _ => rewrite error_assoc in H | H : (error_guard _ _ _) _ = _ |- _ => | H : (error_guard _ _ _) _ = _ |- _ => let H' := fresh in apply error_guard_ret in H; destruct H as [H' H] let H' := fresh in apply error_guard_ret in H; destruct H as [H' H] | _ => progress simplify_equality' | _ => progress simplify_equality' ... ...
 ... @@ -108,7 +108,7 @@ Lemma size_union_alt X Y : size (X ∪ Y) = size X + size (Y ∖ X). ... @@ -108,7 +108,7 @@ Lemma size_union_alt X Y : size (X ∪ Y) = size X + size (Y ∖ X). Proof. Proof. rewrite <-size_union by solve_elem_of. rewrite <-size_union by solve_elem_of. setoid_replace (Y ∖ X) with ((Y ∪ X) ∖ X) by solve_elem_of. setoid_replace (Y ∖ X) with ((Y ∪ X) ∖ X) by solve_elem_of.