Commit 3887c4f7 authored by Simon Spies's avatar Simon Spies

seqZ: rename, by, cbn -> simpl

parent bfebb1e6
Pipeline #17999 canceled with stage
...@@ -396,11 +396,9 @@ Definition positives_unflatten (p : positive) : option (list positive) := ...@@ -396,11 +396,9 @@ Definition positives_unflatten (p : positive) : option (list positive) :=
(** [seqZ m n] generates the sequence [m], [m + 1], ..., [m + n - 1] over integers, provided [n >= 0]. If n < 0, then the range is empty. **) (** [seqZ m n] generates the sequence [m], [m + 1], ..., [m + n - 1] over integers, provided [n >= 0]. If n < 0, then the range is empty. **)
Definition seqZ (m len: Z) : list Z := (λ x: nat, Z.add x m) <$> (seq 0 (Z.to_nat len)). Definition seqZ (m len: Z) : list Z := (λ i: nat, Z.add i m) <$> (seq 0 (Z.to_nat len)).
Arguments seqZ : simpl never. Arguments seqZ : simpl never.
(** * Basic tactics on lists *) (** * Basic tactics on lists *)
(** The tactic [discriminate_list] discharges a goal if it submseteq (** The tactic [discriminate_list] discharges a goal if it submseteq
a list equality involving [(::)] and [(++)] of two lists that have a different a list equality involving [(::)] and [(++)] of two lists that have a different
...@@ -1470,63 +1468,63 @@ Qed. ...@@ -1470,63 +1468,63 @@ Qed.
(** ** Properties of the [seqZ] function *) (** ** Properties of the [seqZ] function *)
Section seqZ. Section seqZ.
Implicit Types (m n : Z) (i j: nat). Implicit Types (m n : Z) (i j: nat).
Open Scope Z. Local Open Scope Z.
Lemma empty_seqZ m n: n ≤ 0 → seqZ m n = []. Lemma seqZ_nil m n: n ≤ 0 → seqZ m n = [].
Proof. intros H; destruct n; cbn; eauto; lia. Qed. Proof. intros H; destruct n; simpl; eauto; lia. Qed.
Lemma step_seqZ m n: n > 0 → seqZ m n = m :: seqZ (m + 1) (n - 1). Lemma seqZ_cons m n: n > 0 → seqZ m n = m :: seqZ (m + 1) (n - 1).
Proof. Proof.
intros H. unfold seqZ. intros H. unfold seqZ.
replace (Z.to_nat n) with (S (Z.to_nat (n - 1))) by replace (Z.to_nat n) with (S (Z.to_nat (n - 1))) by
(rewrite <-Z2Nat.inj_succ; [f_equal|]; lia). (rewrite <-Z2Nat.inj_succ; [f_equal|]; lia).
cbn; f_equal; try lia. simpl; f_equal; try lia.
erewrite <-fmap_seq, map_map, map_ext; eauto. erewrite <-fmap_seq, map_map, map_ext; eauto.
intros; lia. intros; lia.
Qed. Qed.
Lemma length_seqZ m n: length (seqZ m n) = Z.to_nat n. Lemma seqZ_length m n: length (seqZ m n) = Z.to_nat n.
Proof. Proof.
unfold seqZ; now rewrite map_length, seq_length. unfold seqZ; by rewrite map_length, seq_length.
Qed. Qed.
Lemma fmap_seqZ m m' n: (Z.add m) <$> seqZ m' n = seqZ (m + m') n. Lemma seqZ_fmap m m' n: Z.add m <$> seqZ m' n = seqZ (m + m') n.
Proof. Proof.
assert (0 ≤ n ∨ n < 0) as [H|H] by lia. assert (0 ≤ n ∨ n < 0) as [H|H] by lia.
- revert m'. pattern n. eapply natlike_ind; auto; clear n H. - revert m'. pattern n. eapply natlike_ind; auto; clear n H.
intros n H1 IH j. rewrite step_seqZ; try lia. intros n H1 IH j. rewrite seqZ_cons; try lia.
symmetry. rewrite step_seqZ; try lia. symmetry. rewrite seqZ_cons; try lia.
replace (Z.succ n - 1) with n by lia. replace (Z.succ n - 1) with n by lia.
cbn; rewrite IH. simpl; rewrite IH.
f_equal; try lia; f_equal; lia. f_equal; try lia; f_equal; lia.
- rewrite !empty_seqZ; auto; lia. - rewrite !seqZ_nil; auto; lia.
Qed. Qed.
Lemma lookup_seqZ m n i: i < n → seqZ m n !! i = Some (m + i). Lemma seqZ_lookup m n i: i < n → seqZ m n !! i = Some (m + i).
Proof. Proof.
assert (0 ≤ n ∨ n < 0) as [H|H] by lia. assert (0 ≤ n ∨ n < 0) as [H|H] by lia.
- revert m i. pattern n. eapply natlike_ind; auto; clear n H. - revert m i. pattern n. eapply natlike_ind; auto; clear n H.
intros; lia. intros; lia.
intros n H1 IH. intros j [|i] ?; rewrite step_seqZ. 2, 4: lia. intros n H1 IH. intros j [|i] ?; rewrite seqZ_cons. 2, 4: lia.
cbn; f_equal; lia. replace (Z.succ n - 1) with n by lia. simpl; f_equal; lia. replace (Z.succ n - 1) with n by lia.
cbn; rewrite IH; f_equal; lia. simpl; rewrite IH; f_equal; lia.
- rewrite !empty_seqZ; auto; lia. - rewrite !seqZ_nil; auto; lia.
Qed. Qed.
Lemma lookup_seqZ_ge m n i: n ≤ i → seqZ m n !! i = None. Lemma seqZ_lookup_ge m n i: n ≤ i → seqZ m n !! i = None.
Proof. Proof.
assert (0 ≤ n ∨ n < 0) as [H|H] by lia. assert (0 ≤ n ∨ n < 0) as [H|H] by lia.
- revert m i. pattern n. eapply natlike_ind; auto; clear n H. - revert m i. pattern n. eapply natlike_ind; auto; clear n H.
intros n H1 IH. intros j [|i] ?; rewrite step_seqZ. 2, 4: lia. intros n H1 IH. intros j [|i] ?; rewrite seqZ_cons. 2, 4: lia.
cbn; f_equal; lia. replace (Z.succ n - 1) with n by lia. simpl; f_equal; lia. replace (Z.succ n - 1) with n by lia.
cbn; rewrite IH; f_equal; lia. simpl; rewrite IH; f_equal; lia.
- rewrite !empty_seqZ; auto; lia. - rewrite !seqZ_nil; auto; lia.
Qed. Qed.
Lemma lookup_seqZ_inv m n i m' : seqZ m n !! i = Some m' → m' = m + i ∧ i < n. Lemma seqZ_lookup_inv m n i m' : seqZ m n !! i = Some m' → m' = m + i ∧ i < n.
Proof. Proof.
destruct (Z_le_gt_dec n i); [by rewrite lookup_seqZ_ge|]. destruct (Z_le_gt_dec n i); [by rewrite seqZ_lookup_ge|].
rewrite lookup_seqZ by lia. intuition; [congruence|lia]. rewrite seqZ_lookup by lia. intuition; [congruence|lia].
Qed. Qed.
End seqZ. End seqZ.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment