Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Simon Spies
stdpp
Commits
2f42e910
Commit
2f42e910
authored
Mar 03, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Make naive_solver deal with some Boolean connectives.
parent
693ced62
Changes
9
Hide whitespace changes
Inline
Sidebyside
Showing
9 changed files
with
30 additions
and
27 deletions
+30
27
theories/decidable.v
theories/decidable.v
+13
13
theories/list.v
theories/list.v
+1
1
theories/listset.v
theories/listset.v
+1
1
theories/listset_nodup.v
theories/listset_nodup.v
+1
1
theories/option.v
theories/option.v
+1
1
theories/orders.v
theories/orders.v
+1
1
theories/prelude.v
theories/prelude.v
+0
1
theories/proof_irrel.v
theories/proof_irrel.v
+7
7
theories/tactics.v
theories/tactics.v
+5
1
No files found.
theories/decidable.v
View file @
2f42e910
...
...
@@ 11,7 +11,7 @@ Lemma dec_stable `{Decision P} : ¬¬P → P.
Proof
.
firstorder
.
Qed
.
Lemma
Is_true_reflect
(
b
:
bool
)
:
reflect
b
b
.
Proof
.
destruct
b
.
by
left
.
right
.
intros
[].
Qed
.
Proof
.
destruct
b
.
left
;
constructor
.
right
.
intros
[].
Qed
.
Instance
:
Inj
(=)
(
↔
)
Is_true
.
Proof
.
intros
[]
[]
;
simpl
;
intuition
.
Qed
.
...
...
@@ 24,17 +24,17 @@ Definition decide_rel {A B} (R : A → B → Prop) {dec : ∀ x y, Decision (R x
(
x
:
A
)
(
y
:
B
)
:
Decision
(
R
x
y
)
:
=
dec
x
y
.
Lemma
decide_rel_correct
{
A
B
}
(
R
:
A
→
B
→
Prop
)
`
{
∀
x
y
,
Decision
(
R
x
y
)}
(
x
:
A
)
(
y
:
B
)
:
decide_rel
R
x
y
=
decide
(
R
x
y
).
Proof
.
done
.
Qed
.
Proof
.
reflexivity
.
Qed
.
Lemma
decide_True
{
A
}
`
{
Decision
P
}
(
x
y
:
A
)
:
P
→
(
if
decide
P
then
x
else
y
)
=
x
.
Proof
.
by
destruct
(
decide
P
).
Qed
.
Proof
.
destruct
(
decide
P
)
;
tauto
.
Qed
.
Lemma
decide_False
{
A
}
`
{
Decision
P
}
(
x
y
:
A
)
:
¬
P
→
(
if
decide
P
then
x
else
y
)
=
y
.
Proof
.
by
destruct
(
decide
P
).
Qed
.
Proof
.
destruct
(
decide
P
)
;
tauto
.
Qed
.
Lemma
decide_iff
{
A
}
P
Q
`
{
Decision
P
,
Decision
Q
}
(
x
y
:
A
)
:
(
P
↔
Q
)
→
(
if
decide
P
then
x
else
y
)
=
(
if
decide
Q
then
x
else
y
).
Proof
.
intros
[??].
destruct
(
decide
P
),
(
decide
Q
)
;
intuition
.
Qed
.
Proof
.
intros
[??].
destruct
(
decide
P
),
(
decide
Q
)
;
tauto
.
Qed
.
(** The tactic [destruct_decide] destructs a sumbool [dec]. If one of the
components is double negated, it will try to remove the double negation. *)
...
...
@@ 95,7 +95,7 @@ Definition bool_decide (P : Prop) {dec : Decision P} : bool :=
if
dec
then
true
else
false
.
Lemma
bool_decide_reflect
P
`
{
dec
:
Decision
P
}
:
reflect
P
(
bool_decide
P
).
Proof
.
unfold
bool_decide
.
destruct
dec
.
by
left
.
by
right
.
Qed
.
Proof
.
unfold
bool_decide
.
destruct
dec
;
[
left

right
]
;
assumption
.
Qed
.
Tactic
Notation
"case_bool_decide"
"as"
ident
(
Hd
)
:
=
match
goal
with
...
...
@@ 108,15 +108,15 @@ Tactic Notation "case_bool_decide" :=
let
H
:
=
fresh
in
case_bool_decide
as
H
.
Lemma
bool_decide_spec
(
P
:
Prop
)
{
dec
:
Decision
P
}
:
bool_decide
P
↔
P
.
Proof
.
unfold
bool_decide
.
by
destruct
dec
.
Qed
.
Proof
.
unfold
bool_decide
.
destruct
dec
;
simpl
;
tauto
.
Qed
.
Lemma
bool_decide_unpack
(
P
:
Prop
)
{
dec
:
Decision
P
}
:
bool_decide
P
→
P
.
Proof
.
by
rewrite
bool_decide_spec
.
Qed
.
Proof
.
rewrite
bool_decide_spec
;
trivial
.
Qed
.
Lemma
bool_decide_pack
(
P
:
Prop
)
{
dec
:
Decision
P
}
:
P
→
bool_decide
P
.
Proof
.
by
rewrite
bool_decide_spec
.
Qed
.
Proof
.
rewrite
bool_decide_spec
;
trivial
.
Qed
.
Lemma
bool_decide_true
(
P
:
Prop
)
`
{
Decision
P
}
:
P
→
bool_decide
P
=
true
.
Proof
.
by
case_bool_decide
.
Qed
.
Proof
.
case_bool_decide
;
tauto
.
Qed
.
Lemma
bool_decide_false
(
P
:
Prop
)
`
{
Decision
P
}
:
¬
P
→
bool_decide
P
=
false
.
Proof
.
by
case_bool_decide
.
Qed
.
Proof
.
case_bool_decide
;
tauto
.
Qed
.
Lemma
bool_decide_iff
(
P
Q
:
Prop
)
`
{
Decision
P
,
Decision
Q
}
:
(
P
↔
Q
)
→
bool_decide
P
=
bool_decide
Q
.
Proof
.
repeat
case_bool_decide
;
tauto
.
Qed
.
...
...
@@ 138,7 +138,7 @@ Lemma dsig_eq `(P : A → Prop) `{∀ x, Decision (P x)}
Proof
.
apply
(
sig_eq_pi
_
).
Qed
.
Lemma
dexists_proj1
`
(
P
:
A
→
Prop
)
`
{
∀
x
,
Decision
(
P
x
)}
(
x
:
dsig
P
)
p
:
dexist
(
`
x
)
p
=
x
.
Proof
.
by
apply
dsig_eq
.
Qed
.
Proof
.
apply
dsig_eq
;
reflexivity
.
Qed
.
(** * Instances of Decision *)
(** Instances of [Decision] for operators of propositional logic. *)
...
...
@@ 184,7 +184,7 @@ Instance uncurry_dec `(P_dec : ∀ (p : A * B), Decision (P p)) x y :
Instance
sig_eq_dec
`
(
P
:
A
→
Prop
)
`
{
∀
x
,
ProofIrrel
(
P
x
)}
`
{
∀
x
y
:
A
,
Decision
(
x
=
y
)}
(
x
y
:
sig
P
)
:
Decision
(
x
=
y
).
Proof
.
refine
(
cast_if
(
decide
(
`
x
=
`
y
)))
;
by
rewrite
sig_eq_pi
.
Defined
.
Proof
.
refine
(
cast_if
(
decide
(
`
x
=
`
y
)))
;
rewrite
sig_eq_pi
;
trivial
.
Defined
.
(** Some laws for decidable propositions *)
Lemma
not_and_l
{
P
Q
:
Prop
}
`
{
Decision
P
}
:
¬
(
P
∧
Q
)
↔
¬
P
∨
¬
Q
.
...
...
theories/list.v
View file @
2f42e910
...
...
@@ 3,7 +3,7 @@
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
From Coq Require Export Permutation.
From stdpp Require Export numbers base
decidable
option.
From stdpp Require Export numbers base option.
Arguments length {_} _.
Arguments cons {_} _ _.
...
...
theories/listset.v
View file @
2f42e910
...
...
@@ 2,7 +2,7 @@
(* This file is distributed under the terms of the BSD license. *)
(** This file implements finite set as unordered lists without duplicates
removed. This implementation forms a monad. *)
From
stdpp
Require
Export
base
decidable
collections
list
.
From
stdpp
Require
Export
collections
list
.
Record
listset
A
:
=
Listset
{
listset_car
:
list
A
}.
Arguments
listset_car
{
_
}
_
.
...
...
theories/listset_nodup.v
View file @
2f42e910
...
...
@@ 3,7 +3,7 @@
(** This file implements finite as unordered lists without duplicates.
Although this implementation is slow, it is very useful as decidable equality
is the only constraint on the carrier set. *)
From
stdpp
Require
Export
base
decidable
collections
list
.
From
stdpp
Require
Export
collections
list
.
Record
listset_nodup
A
:
=
ListsetNoDup
{
listset_nodup_car
:
list
A
;
listset_nodup_prf
:
NoDup
listset_nodup_car
...
...
theories/option.v
View file @
2f42e910
...
...
@@ 2,7 +2,7 @@
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
From
stdpp
Require
Export
base
tactics
decidable
.
From
stdpp
Require
Export
tactics
.
Inductive
option_reflect
{
A
}
(
P
:
A
→
Prop
)
(
Q
:
Prop
)
:
option
A
→
Type
:
=

ReflectSome
x
:
P
x
→
option_reflect
P
Q
(
Some
x
)
...
...
theories/orders.v
View file @
2f42e910
...
...
@@ 3,7 +3,7 @@
(** This file collects common properties of preorders and semi lattices. This
theory will mainly be used for the theory on collections and finite maps. *)
From
Coq
Require
Export
Sorted
.
From
stdpp
Require
Export
base
decidable
tactics
list
.
From
stdpp
Require
Export
tactics
list
.
(** * Arbitrary pre, parial and total orders *)
(** Properties about arbitrary pre, partial, and total orders. We do not use
...
...
theories/prelude.v
View file @
2f42e910
...
...
@@ 3,7 +3,6 @@
From
stdpp
Require
Export
base
tactics
decidable
orders
option
vector
...
...
theories/proof_irrel.v
View file @
2f42e910
...
...
@@ 2,20 +2,20 @@
(* This file is distributed under the terms of the BSD license. *)
(** This file collects facts on proof irrelevant types/propositions. *)
From
Coq
Require
Import
Eqdep_dec
.
From
stdpp
Require
Export
tactics
.
From
stdpp
Require
Export
base
.
Hint
Extern
200
(
ProofIrrel
_
)
=>
progress
(
lazy
beta
)
:
typeclass_instances
.
Instance
:
ProofIrrel
True
.
Proof
.
by
intros
[]
[].
Qed
.
Proof
.
intros
[]
[]
;
reflexivity
.
Qed
.
Instance
:
ProofIrrel
False
.
Proof
.
by
intros
[].
Qed
.
Proof
.
intros
[].
Qed
.
Instance
and_pi
(
A
B
:
Prop
)
:
ProofIrrel
A
→
ProofIrrel
B
→
ProofIrrel
(
A
∧
B
).
Proof
.
intros
??
[??]
[??].
by
f_equal
.
Qed
.
Proof
.
intros
??
[??]
[??].
f_equal
;
trivial
.
Qed
.
Instance
prod_pi
(
A
B
:
Type
)
:
ProofIrrel
A
→
ProofIrrel
B
→
ProofIrrel
(
A
*
B
).
Proof
.
intros
??
[??]
[??].
by
f_equal
.
Qed
.
Proof
.
intros
??
[??]
[??].
f_equal
;
trivial
.
Qed
.
Instance
eq_pi
{
A
}
`
{
∀
x
y
:
A
,
Decision
(
x
=
y
)}
(
x
y
:
A
)
:
ProofIrrel
(
x
=
y
).
Proof
.
...
...
@@ 27,10 +27,10 @@ Proof. destruct b; simpl; apply _. Qed.
Lemma
sig_eq_pi
`
(
P
:
A
→
Prop
)
`
{
∀
x
,
ProofIrrel
(
P
x
)}
(
x
y
:
sig
P
)
:
x
=
y
↔
`
x
=
`
y
.
Proof
.
split
;
[
by
intros
<
].
split
;
[
intros
<
;
reflexivity
].
destruct
x
as
[
x
Hx
],
y
as
[
y
Hy
]
;
simpl
;
intros
;
subst
.
f_equal
.
apply
proof_irrel
.
Qed
.
Lemma
exists_proj1_pi
`
(
P
:
A
→
Prop
)
`
{
∀
x
,
ProofIrrel
(
P
x
)}
(
x
:
sig
P
)
p
:
`
x
↾
p
=
x
.
Proof
.
by
apply
(
sig_eq_pi
_
).
Qed
.
Proof
.
apply
(
sig_eq_pi
_
)
;
reflexivity
.
Qed
.
theories/tactics.v
View file @
2f42e910
...
...
@@ 4,7 +4,7 @@
the development. *)
From
Coq
Require
Import
Omega
.
From
Coq
Require
Export
Psatz
.
From
stdpp
Require
Export
bas
e
.
From
stdpp
Require
Export
decidabl
e
.
Lemma
f_equal_dep
{
A
B
}
(
f
g
:
∀
x
:
A
,
B
x
)
x
:
f
=
g
→
f
x
=
g
x
.
Proof
.
intros
>
;
reflexivity
.
Qed
.
...
...
@@ 430,6 +430,8 @@ Tactic Notation "naive_solver" tactic(tac) :=

H
:
_
∧
_

_
=>
destruct
H

H
:
∃
_
,
_

_
=>
destruct
H

H
:
?P
→
?Q
,
H2
:
?P

_
=>
specialize
(
H
H2
)

H
:
Is_true
(
bool_decide
_
)

_
=>
apply
(
bool_decide_unpack
_
)
in
H

H
:
Is_true
(
_
&&
_
)

_
=>
apply
andb_True
in
H
;
destruct
H
(**i simplify and solve equalities *)


_
=>
progress
simplify_eq
/=
(**i solve the goal *)
...
...
@@ 441,6 +443,8 @@ Tactic Notation "naive_solver" tactic(tac) :=

reflexivity
]
(**i operations that generate more subgoals *)


_
∧
_
=>
split


Is_true
(
bool_decide
_
)
=>
apply
(
bool_decide_pack
_
)


Is_true
(
_
&&
_
)
=>
apply
andb_True
;
split

H
:
_
∨
_

_
=>
destruct
H
(**i solve the goal using the user supplied tactic *)


_
=>
solve
[
tac
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment