Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Simon Spies
stdpp
Commits
044d309d
Commit
044d309d
authored
Oct 02, 2014
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Completeness of constant expression evaluation.
Also better error messages if a constant expression is expected.
parent
dad635d8
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
0 deletions
+4
-0
theories/ars.v
theories/ars.v
+4
-0
No files found.
theories/ars.v
View file @
044d309d
...
@@ -68,6 +68,10 @@ Section rtc.
...
@@ -68,6 +68,10 @@ Section rtc.
Proof
.
intros
.
etransitivity
;
eauto
.
Qed
.
Proof
.
intros
.
etransitivity
;
eauto
.
Qed
.
Lemma
rtc_inv
x
z
:
rtc
R
x
z
→
x
=
z
∨
∃
y
,
R
x
y
∧
rtc
R
y
z
.
Lemma
rtc_inv
x
z
:
rtc
R
x
z
→
x
=
z
∨
∃
y
,
R
x
y
∧
rtc
R
y
z
.
Proof
.
inversion_clear
1
;
eauto
.
Qed
.
Proof
.
inversion_clear
1
;
eauto
.
Qed
.
Lemma
rtc_ind_l
(
P
:
A
→
Prop
)
(
z
:
A
)
(
Prefl
:
P
z
)
(
Pstep
:
∀
x
y
,
R
x
y
→
rtc
R
y
z
→
P
y
→
P
x
)
:
∀
x
,
rtc
R
x
z
→
P
x
.
Proof
.
induction
1
;
eauto
.
Qed
.
Lemma
rtc_ind_r_weak
(
P
:
A
→
A
→
Prop
)
Lemma
rtc_ind_r_weak
(
P
:
A
→
A
→
Prop
)
(
Prefl
:
∀
x
,
P
x
x
)
(
Pstep
:
∀
x
y
z
,
rtc
R
x
y
→
R
y
z
→
P
x
y
→
P
x
z
)
:
(
Prefl
:
∀
x
,
P
x
x
)
(
Pstep
:
∀
x
y
z
,
rtc
R
x
y
→
R
y
z
→
P
x
y
→
P
x
z
)
:
∀
x
z
,
rtc
R
x
z
→
P
x
z
.
∀
x
z
,
rtc
R
x
z
→
P
x
z
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment