fin_maps.v 70.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26 27
Class FinMapToList (K : Type) (M : Type  Type) :=
  map_to_list :  {A}, M A  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
28

29 30
Class FinMap K M `{FMap M, Lookup K M,  A, Empty (M A), PartialAlter K M,
    OMap M, Merge M, FinMapToList K M,  i j : K, Decision (i = j)} := {
31 32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33 34 35 36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39 40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
43
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45
}.

46 47 48
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
49 50
significant performance loss to make including them in the finite map interface
worthwhile. *)
51 52 53 54 55 56 57 58 59 60
Instance map_insert `{PartialAlter K M} : Insert K M :=
  λ A i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K M} : Alter K M :=
  λ A f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K M} : Delete K M :=
  λ A, partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K M,  A, Empty (M A)} : SingletonM K M :=
  λ A i x, <[i:=x]> .

Definition map_of_list `{Insert K M, Empty (M A)} : list (K * A)  M A :=
61
  fold_right (λ p, <[p.1:=p.2]>) .
62 63
Definition map_of_collection `{Elements K C, Insert K M, Empty (M A)}
    (f : K  option A) (X : C) : M A :=
64
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
65

66 67 68 69 70 71
Instance map_union_with `{Merge M} : UnionWith M :=
  λ A f, merge (union_with f).
Instance map_intersection_with `{Merge M} : IntersectionWith M :=
  λ A f, merge (intersection_with f).
Instance map_difference_with `{Merge M} : DifferenceWith M :=
  λ A f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
72

73
Instance map_equiv `{Lookup K M, Equiv A} : Equiv (M A) | 18 :=
74
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76 77
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
78
Definition map_Forall `{Lookup K M} {A} (P : K  A  Prop) : M A  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
79
  λ m,  i x, m !! i = Some x  P i x.
80
Definition map_relation `{Lookup K M} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
83
Definition map_included `{Lookup K M} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
84
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
85
Definition map_disjoint `{Lookup K M} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87 88 89 90
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
91
Instance map_subseteq `{Lookup K M} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94 95 96 97

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
98
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
99 100 101
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

102 103
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
104
Instance map_difference `{Merge M} {A} : Difference (M A) :=
105
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
106

107 108
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
109 110
Definition map_imap `{Insert K M,  A, Empty (M A),
    FinMapToList K M} {A B} (f : K  A  option B) (m : M A) : M B :=
111 112
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

113 114 115 116
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
117 118
(** ** Setoids *)
Section setoid.
119 120
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
121 122
  Proof.
    split.
123 124
    - by intros m i.
    - by intros m1 m2 ? i.
125
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
126
  Qed.
127
  Global Instance lookup_proper (i: K) : Proper (() ==> ()) (lookup (M:=M) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
130
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132 133 134 135 136
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
137
    Proper (() ==> () ==> ()) (insert (M:=M) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
138
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
139 140
  Global Instance singleton_proper (i : K) :
    Proper (() ==> ()) (singletonM (M:=M) i).
141
  Proof. by intros ???; apply insert_proper. Qed.
142
  Global Instance delete_proper (i: K) : Proper (() ==> ()) (delete (M:=M) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
143 144
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
145
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (M:=M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147 148 149
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
150
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
151
    (() ==> () ==> ())%signature f g 
152
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154 155 156
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
157
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
158 159 160
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
161
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
164 165
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
  Qed.
167 168 169 170 171
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
172
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
173
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
174
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
175 176 177 178 179
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182
End setoid.

(** ** General properties *)
183 184 185 186 187
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
189 190
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
191 192
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
  split; [intros m i; by destruct (m !! i); simpl|].
194
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
195
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
196
    done || etrans; eauto.
197
Qed.
198
Global Instance: PartialOrder (() : relation (M A)).
199
Proof.
200 201 202
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
203 204 205
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
206
Proof. rewrite !map_subseteq_spec. auto. Qed.
207 208 209 210 211 212
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
213 214
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
215 216
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
217 218
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
219 220 221 222 223 224 225 226 227
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
228 229 230
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
231 232
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
233 234

(** ** Properties of the [partial_alter] operation *)
235 236 237
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
238 239
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
240 241
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
242 243
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
244 245
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
246
Qed.
247
Lemma partial_alter_commute {A} f g (m : M A) i j :
248
  i  j  partial_alter f i (partial_alter g j m) =
249 250
    partial_alter g j (partial_alter f i m).
Proof.
251 252 253 254
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
255
  - by rewrite lookup_partial_alter,
256
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
257
  - by rewrite !lookup_partial_alter_ne by congruence.
258 259 260 261
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
262 263
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
264
Qed.
265
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
266
Proof. by apply partial_alter_self_alt. Qed.
267
Lemma partial_alter_subseteq {A} f (m : M A) i :
268
  m !! i = None  m  partial_alter f i m.
269 270 271 272
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
273
Lemma partial_alter_subset {A} f (m : M A) i :
274
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
275
Proof.
276 277 278 279
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
280 281 282
Qed.

(** ** Properties of the [alter] operation *)
283 284
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
285
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
286
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
287
Proof. unfold alter. apply lookup_partial_alter. Qed.
288
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
289
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
290 291 292 293 294 295 296 297 298
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
299 300 301 302
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
303
  destruct (decide (i = j)) as [->|?].
304
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
305
  - rewrite lookup_alter_ne by done. naive_solver.
306 307 308 309
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
310 311
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
312
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
313 314
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
315
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
316
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
317
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
318
  by rewrite lookup_alter_ne by done.
319 320 321 322 323 324 325 326 327 328 329
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
330
  - destruct (decide (i = j)) as [->|?];
331
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
332
  - intros [??]. by rewrite lookup_delete_ne.
333
Qed.
334 335 336
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
337 338 339
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
340 341
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
342 343 344
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
345
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
346 347 348 349 350 351 352
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
353
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
354
Proof.
355 356
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
357 358 359 360 361 362 363 364 365 366
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
367 368
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
369
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
370 371 372
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
373
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
374
  m1  m2  delete i m1  delete i m2.
375 376 377 378
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
379
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
380
Proof.
381 382 383
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
384
Qed.
385
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
386 387 388 389 390
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
391
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
392
Proof. rewrite lookup_insert. congruence. Qed.
393
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
394
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
395 396
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
397 398 399 400 401 402 403
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
404
  - destruct (decide (i = j)) as [->|?];
405
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
406
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
407
Qed.
408 409 410
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
411 412 413
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
414 415 416
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
417
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
418
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
419 420 421 422 423 424 425 426
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
427 428
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
429
Qed.
430
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
431
Proof. apply partial_alter_subseteq. Qed.
432
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
433 434
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
435
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
436
Proof.
437 438 439
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
440 441
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
442
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
443
Proof.
444 445 446 447
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
448 449
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
450
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
451
Proof.
452 453
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
454 455
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
456 457
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
458
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
459
Proof.
460 461 462
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
463 464
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
465
  m1 !! i = None  <[i:=x]> m1  m2 
466 467
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
468
  intros Hi Hm1m2. exists (delete i m2). split_and?.
469 470
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
471 472
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
473
Qed.
474
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
475
Proof. done. Qed.
476 477 478

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
479
  {[i := x]} !! j = Some y  i = j  x = y.
480
Proof.
481
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
482
Qed.
483
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
484
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
485
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
486
Proof. by rewrite lookup_singleton_Some. Qed.
487
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
488
Proof. by rewrite lookup_singleton_None. Qed.
489
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
490 491 492 493
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
494
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
495
Proof.
496
  unfold singletonM, map_singleton, insert, map_insert.
497 498
  by rewrite <-partial_alter_compose.
Qed.
499
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
500
Proof.
501
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
502 503
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
504 505
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
506
  i  j  alter f i {[j := x]} = {[j := x]}.
507
Proof.
508 509
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
510 511
Qed.

512 513 514 515 516
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
517 518 519
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
520 521
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
522
Qed.
523 524 525 526 527 528
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
529 530 531 532
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
533 534
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
535
Qed.
536
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
537 538 539
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
540
Lemma omap_singleton {A B} (f : A  option B) i x y :
541
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
542
Proof.
543 544
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
545
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
546 547 548 549 550
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
551 552 553 554 555 556
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
557 558 559 560 561 562
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
563 564 565 566 567 568
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
569

570 571
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
572
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
573
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
574
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
575
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
576 577 578 579 580
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
581
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
582
  destruct (decide (i = j)) as [->|].
583 584
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
585
Qed.
586
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
587
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
588
Proof.
589 590
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
591
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
592
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
593 594
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
595
  map_of_list l !! i = Some x  (i,x)  l.
596
Proof.
597 598 599
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
600 601
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
602
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
603
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
604
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
605
  i  l.*1  map_of_list l !! i = None.
606
Proof.
607 608
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
609 610
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
611
  map_of_list l !! i = None  i  l.*1.
612
Proof.
613
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
614
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
615 616
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
617 618
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
619
  i  l.*1  map_of_list l !! i = None.
620
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
621
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
622
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
623 624 625 626 627
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
628
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
629
Proof.
630
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
631 632
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
633
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
634 635 636
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
637
    by auto using NoDup_fst_map_to_list.
638 639
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
640
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
641
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
642
Lemma map_to_list_inj {A} (m1 m2 : M A) :
643
  map_to_list m1  map_to_list m2  m1 = m2.
644
Proof.
645
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
646
  auto using map_of_list_proper, NoDup_fst_map_to_list.
647
Qed.
648 649 650 651 652 653
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
654 655 656 657 658 659 660 661 662 663 664 665 666

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_of_list_fmap {A B} (f : A  B) l :
  map_of_list (prod_map id f <$> l) = f <$> map_of_list l.
Proof.
  induction l as [|[i x] l IH]; csimpl; rewrite ?fmap_empty; auto.
  rewrite <-map_of_list_cons; simpl. by rewrite IH, <-fmap_insert.
Qed.

667
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
668 669 670 671 672
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
673
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
674
Proof.
675
  intros. apply map_of_list_inj; csimpl.
676 677
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
678
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
679
    rewrite elem_of_map_to_list in Hlookup. congruence.
680
  - by rewrite !map_of_to_list.
681
Qed.
682 683 684 685 686 687
Lemma map_to_list_contains {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 `contains` map_to_list m2.
Proof.
  intros; apply NoDup_contains; auto using NoDup_map_to_list.
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
688 689 690 691 692 693 694 695 696 697
Lemma map_to_list_fmap {A B} (f : A  B) m :
  map_to_list (f <$> m)  prod_map id f <$> map_to_list m.
Proof.
  assert (NoDup ((prod_map id f <$> map_to_list m).*1)).
  { erewrite <-list_fmap_compose, (list_fmap_ext _ fst) by done.
    apply NoDup_fst_map_to_list. }
  rewrite <-(map_of_to_list m) at 1.
  by rewrite <-map_of_list_fmap, map_to_of_list.
Qed.

698
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
699
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
700
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
701 702
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
703
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
704 705
Proof.
  intros Hperm. apply map_to_list_inj.
706 707 708
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
709 710 711
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
712

713 714 715 716
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
717
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
718
Qed.
719