numbers.v 19.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
(* This file is distributed under the terms of the BSD license. *)
3
4
5
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
6
Require Export Eqdep PArith NArith ZArith NPeano.
7
Require Import QArith Qcanon.
8
Require Export prelude.base prelude.decidable prelude.option.
9
Open Scope nat_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11
12
Coercion Z.of_nat : nat >-> Z.

13
(** * Notations and properties of [nat] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
14
Arguments minus !_ !_ /.
15
16
17
18
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
19
20
Reserved Notation "x ≤ y ≤ z ≤ z'"
  (at level 70, y at next level, z at next level).
21

22
Infix "≤" := le : nat_scope.
23
24
25
26
Notation "x ≤ y ≤ z" := (x  y  y  z)%nat : nat_scope.
Notation "x ≤ y < z" := (x  y  y < z)%nat : nat_scope.
Notation "x < y < z" := (x < y  y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y  y  z)%nat : nat_scope.
27
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%nat : nat_scope.
28
29
30
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.

31
32
33
34
Infix "≥" := ge : nat_scope.
Notation "(≥)" := ge (only parsing) : nat_scope.
Notation "(>)" := gt (only parsing) : nat_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
35
36
Infix "`div`" := Nat.div (at level 35) : nat_scope.
Infix "`mod`" := Nat.modulo (at level 35) : nat_scope.
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
Instance nat_eq_dec:  x y : nat, Decision (x = y) := eq_nat_dec.
39
40
Instance nat_le_dec:  x y : nat, Decision (x  y) := le_dec.
Instance nat_lt_dec:  x y : nat, Decision (x < y) := lt_dec.
41
Instance nat_inhabited: Inhabited nat := populate 0%nat.
42
43
44
45
Instance: Injective (=) (=) S.
Proof. by injection 1. Qed.
Instance: PartialOrder ().
Proof. repeat split; repeat intro; auto with lia. Qed.
46

47
48
49
50
51
52
Instance nat_le_pi:  x y : nat, ProofIrrel (x  y).
Proof.
  assert ( x y (p : x  y) y' (q : x  y'),
    y = y'  eq_dep nat (le x) y p y' q) as aux.
  { fix 3. intros x ? [|y p] ? [|y' q].
    * done.
53
54
    * clear nat_le_pi. intros; exfalso; auto with lia.
    * clear nat_le_pi. intros; exfalso; auto with lia.
55
56
57
58
59
60
61
    * injection 1. intros Hy. by case (nat_le_pi x y p y' q Hy). }
  intros x y p q.
  by apply (eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Instance nat_lt_pi:  x y : nat, ProofIrrel (x < y).
Proof. apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
62
63
64
65
66
67
68
69
Definition sum_list_with {A} (f : A  nat) : list A  nat :=
  fix go l :=
  match l with
  | [] => 0
  | x :: l => f x + go l
  end.
Notation sum_list := (sum_list_with id).

70
71
72
Lemma Nat_lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma Nat_mul_split_l n x1 x2 y1 y2 :
73
74
  x2 < n  y2 < n  x1 * n + x2 = y1 * n + y2  x1 = y1  x2 = y2.
Proof.
75
  intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
76
77
  revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
78
79
80
Lemma Nat_mul_split_r n x1 x2 y1 y2 :
  x1 < n  y1 < n  x1 + x2 * n = y1 + y2 * n  x1 = y1  x2 = y2.
Proof. intros. destruct (Nat_mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
81

82
83
84
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.
85
86
87
88
Instance divide_dec x y : Decision (x | y).
Proof.
  refine (cast_if (decide (lcm x y = y))); by rewrite Nat.divide_lcm_iff.
Defined.
89
90
91
92
93
94
95
96
Instance: PartialOrder divide.
Proof.
  repeat split; try apply _. intros ??. apply Nat.divide_antisym_nonneg; lia.
Qed.
Hint Extern 0 (_ | _) => reflexivity.
Lemma Nat_divide_ne_0 x y : (x | y)  y  0  x  0.
Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.

97
98
99
(** * Notations and properties of [positive] *)
Open Scope positive_scope.

100
Infix "≤" := Pos.le : positive_scope.
101
102
103
104
105
Notation "x ≤ y ≤ z" := (x  y  y  z) : positive_scope.
Notation "x ≤ y < z" := (x  y  y < z) : positive_scope.
Notation "x < y < z" := (x < y  y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y  y  z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : positive_scope.
106
107
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
109
110
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.

111
112
113
114
Infix "≥" := Pos.ge : positive_scope.
Notation "(≥)" := Pos.ge (only parsing) : positive_scope.
Notation "(>)" := Pos.gt (only parsing) : positive_scope.

115
116
117
118
Arguments Pos.of_nat _ : simpl never.
Instance positive_eq_dec:  x y : positive, Decision (x = y) := Pos.eq_dec.
Instance positive_inhabited: Inhabited positive := populate 1.

119
120
Instance maybe_xO : Maybe xO := λ p, match p with p~0 => Some p | _ => None end.
Instance maybe_x1 : Maybe xI := λ p, match p with p~1 => Some p | _ => None end.
121
Instance: Injective (=) (=) (~0).
Robbert Krebbers's avatar
Robbert Krebbers committed
122
Proof. by injection 1. Qed.
123
Instance: Injective (=) (=) (~1).
Robbert Krebbers's avatar
Robbert Krebbers committed
124
125
Proof. by injection 1. Qed.

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint Papp (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => (Papp p1 p2)~0
  | p2~1 => (Papp p1 p2)~1
  end.
Infix "++" := Papp : positive_scope.
Notation "(++)" := Papp (only parsing) : positive_scope.
Notation "( p ++)" := (Papp p) (only parsing) : positive_scope.
Notation "(++ q )" := (λ p, Papp p q) (only parsing) : positive_scope.

Fixpoint Preverse_go (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => Preverse_go (p1~0) p2
  | p2~1 => Preverse_go (p1~1) p2
  end.
Definition Preverse : positive  positive := Preverse_go 1.

Global Instance: LeftId (=) 1 (++).
149
Proof. intros p. by induction p; intros; f_equal'. Qed.
150
151
152
Global Instance: RightId (=) 1 (++).
Proof. done. Qed.
Global Instance: Associative (=) (++).
153
Proof. intros ?? p. by induction p; intros; f_equal'. Qed.
154
155
156
157
158
159
Global Instance:  p : positive, Injective (=) (=) (++ p).
Proof. intros p ???. induction p; simplify_equality; auto. Qed.

Lemma Preverse_go_app p1 p2 p3 :
  Preverse_go p1 (p2 ++ p3) = Preverse_go p1 p3 ++ Preverse_go 1 p2.
Proof.
160
161
162
163
164
165
  revert p3 p1 p2.
  cut ( p1 p2 p3, Preverse_go (p2 ++ p3) p1 = p2 ++ Preverse_go p3 p1).
  { by intros go p3; induction p3; intros p1 p2; simpl; auto; rewrite <-?go. }
  intros p1; induction p1 as [p1 IH|p1 IH|]; intros p2 p3; simpl; auto.
  * apply (IH _ (_~1)).
  * apply (IH _ (_~0)).
166
Qed.
167
Lemma Preverse_app p1 p2 : Preverse (p1 ++ p2) = Preverse p2 ++ Preverse p1.
168
169
170
171
172
173
174
Proof. unfold Preverse. by rewrite Preverse_go_app. Qed.
Lemma Preverse_xO p : Preverse (p~0) = (1~0) ++ Preverse p.
Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1).

Fixpoint Plength (p : positive) : nat :=
175
  match p with 1 => 0%nat | p~0 | p~1 => S (Plength p) end.
176
Lemma Papp_length p1 p2 : Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
177
Proof. by induction p2; f_equal'. Qed.
178
179
180
181

Close Scope positive_scope.

(** * Notations and properties of [N] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
182
Infix "≤" := N.le : N_scope.
183
184
185
186
Notation "x ≤ y ≤ z" := (x  y  y  z)%N : N_scope.
Notation "x ≤ y < z" := (x  y  y < z)%N : N_scope.
Notation "x < y < z" := (x < y  y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y  y  z)%N : N_scope.
187
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z')%N : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
Notation "(≤)" := N.le (only parsing) : N_scope.
189
Notation "(<)" := N.lt (only parsing) : N_scope.
190
191
192
193
194

Infix "≥" := N.ge : N_scope.
Notation "(≥)" := N.ge (only parsing) : N_scope.
Notation "(>)" := N.gt (only parsing) : N_scope.

195
196
197
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.

198
199
Arguments N.add _ _ : simpl never.

Robbert Krebbers's avatar
Robbert Krebbers committed
200
201
202
Instance: Injective (=) (=) Npos.
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
203
204
Instance N_eq_dec:  x y : N, Decision (x = y) := N.eq_dec.
Program Instance N_le_dec (x y : N) : Decision (x  y)%N :=
205
206
  match Ncompare x y with Gt => right _ | _ => left _ end.
Solve Obligations with naive_solver.
207
Program Instance N_lt_dec (x y : N) : Decision (x < y)%N :=
208
209
  match Ncompare x y with Lt => left _ | _ => right _ end.
Solve Obligations with naive_solver.
210
Instance N_inhabited: Inhabited N := populate 1%N.
211
212
213
214
215
Instance: PartialOrder ()%N.
Proof.
  repeat split; red. apply N.le_refl. apply N.le_trans. apply N.le_antisymm.
Qed.
Hint Extern 0 (_  _)%N => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
216

217
(** * Notations and properties of [Z] *)
218
219
Open Scope Z_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
220
Infix "≤" := Z.le : Z_scope.
221
222
223
224
Notation "x ≤ y ≤ z" := (x  y  y  z) : Z_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Z_scope.
Notation "x < y < z" := (x < y  y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Z_scope.
225
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
226
Notation "(≤)" := Z.le (only parsing) : Z_scope.
227
Notation "(<)" := Z.lt (only parsing) : Z_scope.
228

229
230
231
232
Infix "≥" := Z.ge : Z_scope.
Notation "(≥)" := Z.ge (only parsing) : Z_scope.
Notation "(>)" := Z.gt (only parsing) : Z_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
233
234
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
235
236
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
237
238
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
239

240
241
242
243
244
Instance: Injective (=) (=) Zpos.
Proof. by injection 1. Qed.
Instance: Injective (=) (=) Zneg.
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
245
Instance Z_eq_dec:  x y : Z, Decision (x = y) := Z.eq_dec.
246
247
248
Instance Z_le_dec:  x y : Z, Decision (x  y) := Z_le_dec.
Instance Z_lt_dec:  x y : Z, Decision (x < y) := Z_lt_dec.
Instance Z_inhabited: Inhabited Z := populate 1.
249
250
251
252
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Z.le_refl. apply Z.le_trans. apply Z.le_antisymm.
Qed.
253
254
255
256
257
258
259
260
261
262
263
264

Lemma Z_pow_pred_r n m : 0 < m  n * n ^ (Z.pred m) = n ^ m.
Proof.
  intros. rewrite <-Z.pow_succ_r, Z.succ_pred. done. by apply Z.lt_le_pred.
Qed.
Lemma Z_quot_range_nonneg k x y : 0  x < k  0 < y  0  x `quot` y < k.
Proof.
  intros [??] ?.
  destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
  destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
  split. apply Z.quot_pos; lia. transitivity x; auto. apply Z.quot_lt; lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
265

266
(* Note that we cannot disable simpl for [Z.of_nat] as that would break
267
tactics as [lia]. *)
268
269
270
271
272
273
274
275
276
277
Arguments Z.to_nat _ : simpl never.
Arguments Z.mul _ _ : simpl never.
Arguments Z.add _ _ : simpl never.
Arguments Z.opp _ : simpl never.
Arguments Z.pow _ _ : simpl never.
Arguments Z.div _ _ : simpl never.
Arguments Z.modulo _ _ : simpl never.
Arguments Z.quot _ _ : simpl never.
Arguments Z.rem _ _ : simpl never.

278
279
280
281
282
Lemma Z_to_nat_neq_0_pos x : Z.to_nat x  0%nat  0 < x.
Proof. by destruct x. Qed.
Lemma Z_to_nat_neq_0_nonneg x : Z.to_nat x  0%nat  0  x.
Proof. by destruct x. Qed.
Lemma Z_mod_pos x y : 0 < y  0  x `mod` y.
283
284
285
286
287
Proof. apply Z.mod_pos_bound. Qed.

Hint Resolve Z.lt_le_incl : zpos.
Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
288
289
Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Hint Resolve Z_mod_pos Z.div_pos : zpos.
290
291
Hint Extern 1000 => lia : zpos.

Robbert Krebbers's avatar
Robbert Krebbers committed
292
293
Lemma Z_to_nat_nonpos x : x  0  Z.to_nat x = 0%nat.
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
294
295
Lemma Z2Nat_inj_pow (x y : nat) : Z.of_nat (x ^ y) = x ^ y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
296
297
298
  induction y as [|y IH]; [by rewrite Z.pow_0_r, Nat.pow_0_r|].
  by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
    Nat2Z.inj_mul, IH by auto with zpos.
299
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
301
302
303
304
305
306
307
308
309
310
311
Lemma Nat2Z_divide n m : (Z.of_nat n | Z.of_nat m)  (n | m)%nat.
Proof.
  split.
  * rewrite <-(Nat2Z.id m) at 2; intros [i ->]; exists (Z.to_nat i).
    destruct (decide (0  i)%Z).
    { by rewrite Z2Nat.inj_mul, Nat2Z.id by lia. }
    by rewrite !Z_to_nat_nonpos by auto using Z.mul_nonpos_nonneg with lia.
  * intros [i ->]. exists (Z.of_nat i). by rewrite Nat2Z.inj_mul.
Qed.
Lemma Z2Nat_divide n m :
  0  n  0  m  (Z.to_nat n | Z.to_nat m)%nat  (n | m).
Proof. intros. by rewrite <-Nat2Z_divide, !Z2Nat.id by done. Qed.
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
Lemma Z2Nat_inj_div x y : Z.of_nat (x `div` y) = x `div` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.div_unique with (x `mod` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma Z2Nat_inj_mod x y : Z.of_nat (x `mod` y) = x `mod` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.mod_unique with (x `div` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Close Scope Z_scope.

330
(** * Notations and properties of [Qc] *)
331
Open Scope Qc_scope.
332
333
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
334
Notation "2" := (1+1) : Qc_scope.
335
336
337
338
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Notation "x - y" := (x + -y) : Qc_scope.
Notation "x / y" := (x * /y) : Qc_scope.
339
Infix "≤" := Qcle : Qc_scope.
340
341
342
343
Notation "x ≤ y ≤ z" := (x  y  y  z) : Qc_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Qc_scope.
Notation "x < y < z" := (x < y  y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Qc_scope.
344
Notation "x ≤ y ≤ z ≤ z'" := (x  y  y  z  z  z') : Qc_scope.
345
346
347
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.

348
349
350
351
Infix "≥" := Qcge : Qc_scope.
Notation "(≥)" := Qcge (only parsing) : Qc_scope.
Notation "(>)" := Qcgt (only parsing) : Qc_scope.

352
353
354
Hint Extern 1 (_  _) => reflexivity || discriminate.
Arguments Qred _ : simpl never.

355
Instance Qc_eq_dec:  x y : Qc, Decision (x = y) := Qc_eq_dec.
356
Program Instance Qc_le_dec (x y : Qc) : Decision (x  y) :=
357
  if Qclt_le_dec y x then right _ else left _.
358
359
Next Obligation. intros x y; apply Qclt_not_le. Qed.
Next Obligation. done. Qed.
360
Program Instance Qc_lt_dec (x y : Qc) : Decision (x < y) :=
361
  if Qclt_le_dec x y then left _ else right _.
362
363
Solve Obligations with done.
Next Obligation. intros x y; apply Qcle_not_lt. Qed.
364

365
366
367
368
369
370
371
372
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Qcle_refl. apply Qcle_trans. apply Qcle_antisym.
Qed.
Instance: StrictOrder (<).
Proof.
  split; red. intros x Hx. by destruct (Qclt_not_eq x x). apply Qclt_trans.
Qed.
373
374
375
376
Lemma Qcmult_0_l x : 0 * x = 0.
Proof. ring. Qed.
Lemma Qcmult_0_r x : x * 0 = 0.
Proof. ring. Qed.
377
Lemma Qcle_ngt (x y : Qc) : x  y  ¬y < x.
378
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
379
Lemma Qclt_nge (x y : Qc) : x < y  ¬y  x.
380
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
381
Lemma Qcplus_le_mono_l (x y z : Qc) : x  y  z + x  z + y.
382
383
384
Proof.
  split; intros.
  * by apply Qcplus_le_compat.
385
386
  * replace x with ((0 - z) + (z + x)) by ring.
    replace y with ((0 - z) + (z + y)) by ring.
387
388
    by apply Qcplus_le_compat.
Qed.
389
Lemma Qcplus_le_mono_r (x y z : Qc) : x  y  x + z  y + z.
390
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
391
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y  z + x < z + y.
392
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
393
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y  x + z < y + z.
394
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
395
396
397
398
Instance: Injective (=) (=) Qcopp.
Proof.
  intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
399
Instance:  z, Injective (=) (=) (Qcplus z).
400
401
402
403
Proof.
  intros z x y H. by apply (anti_symmetric ());
    rewrite (Qcplus_le_mono_l _ _ z), H.
Qed.
404
405
406
407
408
Instance:  z, Injective (=) (=) (λ x, x + z).
Proof.
  intros z x y H. by apply (anti_symmetric ());
    rewrite (Qcplus_le_mono_r _ _ z), H.
Qed.
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x  0  y  0 < x + y.
Proof.
  intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0  x  0 < y  0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed. 
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x  0 < y  0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0  x  0  y  0  x + y.
Proof.
  intros. transitivity (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0  y  0  x + y < 0.
Proof.
  intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x  0  y < 0  x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0  y < 0  x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x  0  y  0  x + y  0.
Proof.
  intros. transitivity (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
Lemma Qcmult_le_mono_nonneg_l x y z : 0  z  x  y  z * x  z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0  z  x  y  x * z  y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z  x  y  z * x  z * y.
Proof.
  split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
  rewrite !Qcle_ngt, !(Qcmult_comm z).
  intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z  x  y  x * z  y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z  x < y  z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z  x < y  x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x  0 < y  0 < x * y.
Proof.
  intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0  x  0  y  0  x * y.
Proof.
  intros. transitivity (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_le_mono_nonneg_r.
Qed.

Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Coercion Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).
Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m  n = m.
Proof. split. auto using Z2Qc_inj. by intros ->. Qed.
Lemma Z2Qc_inj_le n m : (n  m)%Z  Qc_of_Z n  Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z  Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
  apply Qc_is_canon; simpl.
  by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
488
Close Scope Qc_scope.