fin_maps.v 82.4 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_collections.
9 10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12 13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14 15 16 17 18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24 25 26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
29 30
Hint Mode FinMapToList ! - - : typeclass_instances.
Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

32 33
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
34
    EqDecision K} := {
35 36
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
37 38 39 40
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
41
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
42
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
43 44
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
45
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
46
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
47
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
48 49
}.

50 51 52
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
53 54
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
55 56 57 58 59 60 61 62 63 64
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
65
  fold_right (λ p, <[p.1:=p.2]>) .
66 67 68 69 70 71 72

Definition map_to_collection `{FinMapToList K A M,
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
  of_list (curry f <$> map_to_list m).
Definition map_of_collection `{Elements B C, Insert K A M, Empty M}
    (f : B  K * A) (X : C) : M :=
  map_of_list (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74 75 76 77 78 79
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
80

81
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
82
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
83

84 85
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
86
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
87
  λ m,  i x, m !! i = Some x  P i x.
88
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
89 90
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
91
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
92
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
93
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96 97 98
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
99
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
100
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103 104 105

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
106
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
107 108 109
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

110 111
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
112
Instance map_difference `{Merge M} {A} : Difference (M A) :=
113
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
114

115 116
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
117 118
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
119 120
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

121 122 123 124 125 126 127
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

128 129 130 131 132
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

133 134 135 136
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
137 138
(** ** Setoids *)
Section setoid.
139
  Context `{Equiv A}.
140

141 142 143 144
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

145 146
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
147 148
  Proof.
    split.
149 150
    - by intros m i.
    - by intros m1 m2 ? i.
151
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
152
  Qed.
153 154
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
157
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
158 159 160 161 162 163
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
164
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
165
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
166 167
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
168 169 170 171
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
172 173
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
174 175
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
176
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
177 178 179 180
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
181
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
182
    (() ==> () ==> ())%signature f g 
183
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
184 185 186 187
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
188
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
189 190 191
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
192
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
194
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
195 196
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
197 198 199
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
200
  Qed.
201 202 203 204 205
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
206 207 208
End setoid.

(** ** General properties *)
209 210 211 212 213
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
215 216
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
217
Global Instance map_included_preorder {A} (R : relation A) :
218
  PreOrder R  PreOrder (map_included R : relation (M A)).
219
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
220
  split; [intros m i; by destruct (m !! i); simpl|].
221
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
222
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
223
    done || etrans; eauto.
224
Qed.
225
Global Instance map_subseteq_po : PartialOrder (() : relation (M A)).
226
Proof.
227 228 229
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
230 231 232
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
233
Proof. rewrite !map_subseteq_spec. auto. Qed.
234 235 236 237 238 239
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
240 241
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
242 243
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
244 245
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
246 247 248 249 250 251
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
252
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
253 254
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
255 256 257
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
258 259
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
260

261 262 263 264 265
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
266
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
267 268 269 270 271 272 273 274 275 276
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

277
(** ** Properties of the [partial_alter] operation *)
278 279 280
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
281 282
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
283 284
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
285 286
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
287 288
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
289
Qed.
290
Lemma partial_alter_commute {A} f g (m : M A) i j :
291
  i  j  partial_alter f i (partial_alter g j m) =
292 293
    partial_alter g j (partial_alter f i m).
Proof.
294 295 296 297
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
298
  - by rewrite lookup_partial_alter,
299
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
300
  - by rewrite !lookup_partial_alter_ne by congruence.
301 302 303 304
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
305 306
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
307
Qed.
308
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
309
Proof. by apply partial_alter_self_alt. Qed.
310
Lemma partial_alter_subseteq {A} f (m : M A) i :
311
  m !! i = None  m  partial_alter f i m.
312 313 314 315
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
316
Lemma partial_alter_subset {A} f (m : M A) i :
317
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
318
Proof.
319 320
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
321 322 323
Qed.

(** ** Properties of the [alter] operation *)
324
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
325
Proof. unfold alter. apply lookup_partial_alter. Qed.
326 327
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
328
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
329 330 331
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
332 333 334 335 336 337 338 339 340
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
341
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
342 343 344
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
345
  destruct (decide (i = j)) as [->|?].
346
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
347
  - rewrite lookup_alter_ne by done. naive_solver.
348
Qed.
349
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
350 351
  alter f i m !! j = None  m !! j = None.
Proof.
352 353
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
354
Qed.
355
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
356 357
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
358
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
359
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
360
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
361
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
362
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
363
  by rewrite lookup_alter_ne by done.
364
Qed.
365 366 367 368 369 370 371 372 373 374 375 376
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
377 378 379 380 381 382 383 384 385 386

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
387
  - destruct (decide (i = j)) as [->|?];
388
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
389
  - intros [??]. by rewrite lookup_delete_ne.
390
Qed.
391 392 393
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
394 395 396
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
397 398
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
399 400 401 402 403 404 405 406 407
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
408
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
409
Proof.
410 411
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
412
Qed.
413 414 415
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
416 417 418 419 420 421 422 423 424
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
425 426 427
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
428 429
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
430
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
431 432 433
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
434
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
435
Proof.
436 437
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
438
Qed.
439
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
440
Proof.
441 442
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
443 444 445 446 447
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
448
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
449
Proof. rewrite lookup_insert. congruence. Qed.
450
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
451
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
452 453
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
454 455 456 457 458 459 460
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
461
  - destruct (decide (i = j)) as [->|?];
462
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
463
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
464
Qed.
465 466 467
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
468 469 470
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
471 472 473
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
474 475 476
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
477
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
478
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
479 480 481 482 483 484 485 486
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
487 488
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
489
Qed.
490
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
491 492 493 494 495 496
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.

497
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
498
Proof. apply partial_alter_subseteq. Qed.
499
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
500
Proof. intro. apply partial_alter_subset; eauto. Qed.
501 502 503 504 505
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
506
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
507
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
508
Proof.
509
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
510
Qed.
511

512
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
513
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
514
Proof.
515 516 517 518
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
519 520
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
521
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
522
Proof.
523 524
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
525 526
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
527 528
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
529
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
530
Proof.
531 532 533
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
534 535
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
536
  m1 !! i = None  <[i:=x]> m1  m2 
537 538
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
539
  intros Hi Hm1m2. exists (delete i m2). split_and?.
540 541
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
542 543
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
544 545 546 547
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
548
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
549
Proof.
550
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
551
Qed.
552 553
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
554
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
555
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
556
Proof. by rewrite lookup_singleton_Some. Qed.
557 558
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
559
Proof. by rewrite lookup_singleton_None. Qed.
560
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
561 562 563 564
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
565
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
566
Proof.
567
  unfold singletonM, map_singleton, insert, map_insert.
568 569
  by rewrite <-partial_alter_compose.
Qed.
570 571
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
572
Proof.
573
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
574 575
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
576 577
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
578
  i  j  alter f i ({[j := x]} : M A) = {[j := x]}.
579
Proof.
580 581
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
582
Qed.
583
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  ( : M A).
584
Proof. apply insert_non_empty. Qed.
585
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ( : M A).
586
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
587
Lemma delete_singleton_ne {A} i j (x : A) :
588
  i  j  delete i ({[j := x]} : M A) = {[j := x]}.
589
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
590

591 592 593 594 595
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
596 597 598
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
599 600
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
601
Qed.
602 603 604 605 606 607
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
608 609 610 611
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
612 613
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
614
Qed.
615
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
616 617 618
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
619
Lemma omap_singleton {A B} (f : A  option B) i x y :
620
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
621
Proof.
622 623
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
624
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
625 626 627 628 629
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
630
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) (m : M A) :
631 632 633 634 635
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
636
Lemma map_fmap_ext {A B} (f1 f2 : A  B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
637 638 639 640 641
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
642
Lemma omap_ext {A B} (f1 f2 : A  option B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
643 644 645 646 647
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
Lemma map_fmap_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using map_fmap_mono.
  exists j. by rewrite !lookup_fmap, fmap_None, fmap_is_Some.
Qed.
Lemma map_omap_mono {A B} (f : A  option B) (m1 m2 : M A) :
  m1  m2  omap f m1  omap f m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_omap, !bind_Some. naive_solver.
Qed.

669
(** ** Properties of conversion to lists *)
670 671 672
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
673
Lemma map_to_list_unique {A} (m : M A) i x y :
674
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
675
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
676
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
677
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
678
Lemma elem_of_map_of_list_1' {A} (l : list (K * A)) i x :
679
  ( y, (i,y)  l  x = y)  (i,x)  l  (map_of_list l : M A) !! i = Some x.
680 681 682
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
683
  intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
684
  destruct (decide (i = j)) as [->|].
685
  - rewrite lookup_insert; f_equal; eauto using eq_sym.
686
  - rewrite lookup_insert_ne by done; eauto.
687
Qed.
688
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
689
  NoDup (l.*1)  (i,x)  l  (map_of_list l : M A) !! i = Some x.
690
Proof.
691
  intros ? Hx; apply elem_of_map_of_list_1'; eauto using NoDup_fmap_fst.
692
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
693
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
694
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
695 696
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
697
  (map_of_list l : M A) !! i = Some x  (i,x)  l.
698
Proof.
699 700 701
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
702
Qed.
703 704
Lemma elem_of_map_of_list' {A} (l : list (K * A)) i x :
  ( x', (i,x)  l  (i,x')  l  x = x') 
705
  (i,x)  l  (map_of_list l : M A) !! i = Some x.
706
Proof. split; auto using elem_of_map_of_list_1', elem_of_map_of_list_2. Qed.
707
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
708
  NoDup (l.*1)  (i,x)  l  (map_of_list l : M A) !! i = Some x.
709
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
710

711
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
712
  i  l.*1  (map_of_list l : M A) !! i = None.
713
Proof.
714 715
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
716 717
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
718
  (map_of_list l : M A) !! i = None  i  l.*1.
719
Proof.
Robbert Krebbers's avatar