fin_maps.v 71.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9 10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12 13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14 15 16 17 18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24 25 26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30 31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33 34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35 36 37 38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41 42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
}.

48 49 50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51 52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53 54 55 56 57 58 59 60 61 62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
66
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
67

68 69 70 71 72 73
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
74

75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
76
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78 79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
80
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  λ m,  i x, m !! i = Some x  P i x.
82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
85
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
87
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
88 89 90 91 92
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
93
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
95 96 97 98 99

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
100
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
101 102 103
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

104 105
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
106
Instance map_difference `{Merge M} {A} : Difference (M A) :=
107
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109 110
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
111 112
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
113 114
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

115 116 117 118
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
119 120
(** ** Setoids *)
Section setoid.
121 122
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
123 124
  Proof.
    split.
125 126
    - by intros m i.
    - by intros m1 m2 ? i.
127
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
128
  Qed.
129 130
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
133
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
134 135 136 137 138 139
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
140
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
141
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
142 143
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
144
  Proof. by intros ???; apply insert_proper. Qed.
145 146
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
147 148
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
149
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
150 151 152 153
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
154
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
155
    (() ==> () ==> ())%signature f g 
156
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
157 158 159 160
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
161
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
162 163 164
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
165
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
166 167
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
168 169
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Qed.
171 172 173 174 175
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
176
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
177
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
178
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
179 180 181 182 183
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
184 185 186
End setoid.

(** ** General properties *)
187 188 189 190 191
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
193 194
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
195 196
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
  split; [intros m i; by destruct (m !! i); simpl|].
198
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
199
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
200
    done || etrans; eauto.
201
Qed.
202
Global Instance: PartialOrder (() : relation (M A)).
203
Proof.
204 205 206
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
207 208 209
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
210
Proof. rewrite !map_subseteq_spec. auto. Qed.
211 212 213 214 215 216
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
217 218
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
219 220
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
221 222
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
223 224 225 226 227 228 229 230 231
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
232 233 234
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
235 236
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
237 238

(** ** Properties of the [partial_alter] operation *)
239 240 241
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
242 243
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
244 245
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
246 247
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
248 249
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
250
Qed.
251
Lemma partial_alter_commute {A} f g (m : M A) i j :
252
  i  j  partial_alter f i (partial_alter g j m) =
253 254
    partial_alter g j (partial_alter f i m).
Proof.
255 256 257 258
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
259
  - by rewrite lookup_partial_alter,
260
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
261
  - by rewrite !lookup_partial_alter_ne by congruence.
262 263 264 265
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
266 267
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
268
Qed.
269
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
270
Proof. by apply partial_alter_self_alt. Qed.
271
Lemma partial_alter_subseteq {A} f (m : M A) i :
272
  m !! i = None  m  partial_alter f i m.
273 274 275 276
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
277
Lemma partial_alter_subset {A} f (m : M A) i :
278
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
279
Proof.
280 281 282 283
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
284 285 286
Qed.

(** ** Properties of the [alter] operation *)
287 288
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
289
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
290
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
291
Proof. unfold alter. apply lookup_partial_alter. Qed.
292
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
293
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
294 295 296 297 298 299 300 301 302
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
303 304 305 306
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
307
  destruct (decide (i = j)) as [->|?].
308
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
309
  - rewrite lookup_alter_ne by done. naive_solver.
310 311 312 313
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
314 315
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
316
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
317 318
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
319
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
321
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
322
  by rewrite lookup_alter_ne by done.
323 324 325 326 327 328 329 330 331 332 333
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
334
  - destruct (decide (i = j)) as [->|?];
335
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
336
  - intros [??]. by rewrite lookup_delete_ne.
337
Qed.
338 339 340
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
341 342 343
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
344 345
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
346 347 348
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
349
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
350 351 352 353 354 355 356
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
357
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
358
Proof.
359 360
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
361 362 363 364 365 366 367 368 369 370
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
371 372
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
373
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
374 375 376
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
377
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
378
  m1  m2  delete i m1  delete i m2.
379 380 381 382
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
383
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
384
Proof.
385 386 387
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
388
Qed.
389
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
390 391 392 393 394
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
395
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
396
Proof. rewrite lookup_insert. congruence. Qed.
397
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
398
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
399 400
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
401 402 403 404 405 406 407
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
408
  - destruct (decide (i = j)) as [->|?];
409
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
410
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
411
Qed.
412 413 414
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
415 416 417
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
418 419 420
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
421
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
422
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
423 424 425 426 427 428 429 430
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
431 432
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
433
Qed.
434
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
435
Proof. apply partial_alter_subseteq. Qed.
436
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
437 438
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
439
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
440
Proof.
441 442 443
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
444 445
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
446
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
447
Proof.
448 449 450 451
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
452 453
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
454
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
455
Proof.
456 457
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
458 459
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
460 461
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
462
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
463
Proof.
464 465 466
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
467 468
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
469
  m1 !! i = None  <[i:=x]> m1  m2 
470 471
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
472
  intros Hi Hm1m2. exists (delete i m2). split_and?.
473 474
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
475 476
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
477
Qed.
478
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
479
Proof. done. Qed.
480 481 482 483
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
484 485 486

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
487
  {[i := x]} !! j = Some y  i = j  x = y.
488
Proof.
489
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
490
Qed.
491
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
492
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
493
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
494
Proof. by rewrite lookup_singleton_Some. Qed.
495
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
496
Proof. by rewrite lookup_singleton_None. Qed.
497
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
498 499 500 501
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
502
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
503
Proof.
504
  unfold singletonM, map_singleton, insert, map_insert.
505 506
  by rewrite <-partial_alter_compose.
Qed.
507
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
508
Proof.
509
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
510 511
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
512 513
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
514
  i  j  alter f i {[j := x]} = {[j := x]}.
515
Proof.
516 517
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
518
Qed.
519 520
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
521

522 523 524 525 526
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
527 528 529
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
530 531
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
532
Qed.
533 534 535 536 537 538
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
539 540 541 542
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
543 544
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
545
Qed.
546
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
547 548 549
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
550
Lemma omap_singleton {A B} (f : A  option B) i x y :
551
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
552
Proof.
553 554
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
555
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
556 557 558 559 560
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
561
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
562 563 564 565 566
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
567 568 569 570 571 572
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
573 574 575 576 577 578
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
579

580 581
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
582
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
583
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
584
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
585
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
586 587 588 589 590
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
591
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
592
  destruct (decide (i = j)) as [->|].
593 594
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
595
Qed.
596
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
597
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
598
Proof.
599 600
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
601
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
602
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
603 604
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
605
  map_of_list l !! i = Some x  (i,x)  l.
606
Proof.
607 608 609
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
610 611
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
612
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
613
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
614
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
615
  i  l.*1  map_of_list l !! i = None.
616
Proof.
617 618
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
619 620
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
621
  map_of_list l !! i = None  i  l.*1.
622
Proof.
623
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
624
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
625 626
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
627 628
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
629
  i  l.*1  map_of_list l !! i = None.
630
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
631
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
632
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
633 634 635 636 637
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
638
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
639
Proof.
640
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
641 642
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
643
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
644 645 646
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
647
    by auto using NoDup_fst_map_to_list.
648 649
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
650
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
651
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
652
Lemma map_to_list_inj {A} (m1 m2 : M A) :
653
  map_to_list m1  map_to_list m2  m1 = m2.
654
Proof.
655
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
656
  auto using map_of_list_proper, NoDup_fst_map_to_list.
657
Qed.
658 659 660 661 662 663
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
664 665 666 667 668 669 670 671 672 673 674 675 676

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_of_list_fmap {A B} (f : A  B) l :
  map_of_list (prod_map id f <$> l) = f <$> map_of_list l.
Proof.
  induction l as [|[i x] l IH]; csimpl; rewrite ?fmap_empty; auto.
  rewrite <-map_of_list_cons; simpl. by rewrite IH, <-fmap_insert.
Qed.

677
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
678 679 680 681 682
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
683
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
684
Proof.
685
  intros. apply map_of_list_inj; csimpl.
686 687
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
688
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
689
    rewrite elem_of_map_to_list in Hlookup. congruence.
690
  - by rewrite !map_of_to_list.
691
Qed.
692 693 694 695 696 697
Lemma map_to_list_singleton {A} i (x : A) : map_to_list {[i:=x]} = [(i,x)].
Proof.
  apply Permutation_singleton. unfold singletonM, map_singleton.
  by rewrite map_to_list_insert, map_to_list_empty by auto using lookup_empty.
Qed.

698 699 700 701 702 703
Lemma map_to_list_contains {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 `contains` map_to_list m2.
Proof.
  intros; apply NoDup_contains; auto using NoDup_map_to_list.
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
704 705 706 707 708 709 710 711 712 713
Lemma map_to_list_fmap {A B} (f : A  B) m :
  map_to_list (f <$> m)  prod_map id f <$> map_to_list m.
Proof.
  assert (NoDup ((prod_map id f <$> map_to_list m).*1)).
  { erewrite <-list_fmap_compose, (list_fmap_ext _ fst) by done.
    apply NoDup_fst_map_to_list. }
  rewrite <-(map_of_to_list m) at 1.
  by rewrite <-map_of_list_fmap, map_to_of_list.
Qed.

714
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
715
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
716
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
717
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
718 719 720 721 722
Lemma map_to_list_empty' {A} (m : M A) : map_to_list m = []  m =<