list.v 151 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18 19 20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23 24 25 26 27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28 29 30 31 32 33 34 35 36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37 38 39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45 46 47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
48 49
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
50 51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
53
  end.
54

55 56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57 58 59 60 61 62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63 64 65 66 67
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
68

69 70 71
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
72 73
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
74 75
  match l with
  | [] => []
76
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
77
  end.
78 79 80

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
82 83
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85 86 87

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
88
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
89 90
  match l with
  | [] => []
91
  | x :: l => if decide (P x) then x :: filter P l else filter P l
92 93 94 95
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
96
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
97 98
  fix go l :=
  match l with
99 100
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
101
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
102 103 104 105

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
106
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108 109 110

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

111 112 113 114
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
115

Robbert Krebbers's avatar
Robbert Krebbers committed
116 117 118 119 120 121
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
122
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
123 124 125
  end.
Arguments resize {_} !_ _ !_.

126 127 128
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
129 130
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
131
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
132 133
  end.

134
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
135 136 137 138
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
139

140 141 142 143
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
144
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
145 146 147

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
148 149
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
150 151 152 153 154 155
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
156 157
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
158 159
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
160
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
161
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
162
  fix go l :=
163
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
164 165 166 167 168

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
169
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
170
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
171 172 173 174
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
175 176 177 178 179 180 181 182 183
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

184 185 186 187 188 189 190
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
191

192 193 194 195 196 197 198
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
199 200 201 202

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
203
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
204 205
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
206
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
207

208 209
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
210 211
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
212 213
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
214 215
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
216

217 218 219 220 221 222 223 224
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
225
      if decide_rel (=) x1 x2
226
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
227 228 229 230 231
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
232 233
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
234
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
235

236
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
237 238 239
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
240
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
241
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
242
Infix "`sublist`" := sublist (at level 70) : C_scope.
243
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
244 245

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
246
from [l1] while possiblity changing the order. *)
247 248 249 250
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
251
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
252 253
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
254
Hint Extern 0 (?x `contains` ?y) => reflexivity.
255 256 257 258 259 260 261 262 263 264

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
265
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
266 267
    end.
End contains_dec_help.
268

269 270 271 272 273
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
299
      then list_difference l k else x :: list_difference l k
300
    end.
301
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
302 303 304 305 306
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
307
      then x :: list_intersection l k else list_intersection l k
308 309 310 311 312 313 314 315 316
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
317 318

(** * Basic tactics on lists *)
319 320 321
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
322 323
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
324
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
325
Tactic Notation "discriminate_list_equality" :=
326 327 328
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
329

330 331 332
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
333 334 335 336 337 338 339 340 341
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
342
Ltac simplify_list_equality :=
343
  repeat match goal with
344
  | _ => progress simplify_equality'
345
  | H : _ ++ _ = _ ++ _ |- _ => first
346 347 348
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
349
  | H : [?x] !! ?i = Some ?y |- _ =>
350
    destruct i; [change (Some x = Some y) in H | discriminate]
351
  end.
352

353 354
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
355
Context {A : Type}.
356 357
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
358

359 360 361
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
362
Proof. intros ???. apply app_inv_head. Qed.
363
Global Instance:  k, Injective (=) (=) (++ k).
364
Proof. intros ???. apply app_inv_tail. Qed.
365 366 367 368 369 370
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
371

372
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
373
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
374 375
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
376
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
377 378 379
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
380 381
Proof.
  revert l2. induction l1; intros [|??] H.
382
  * done.
383 384
  * discriminate (H 0).
  * discriminate (H 0).
385
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
386
Qed.
387
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
388
  Decision (l = k) := list_eq_dec dec.
389 390 391 392 393 394 395 396
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
397
Lemma nil_or_length_pos l : l = []  length l  0.
398
Proof. destruct l; simpl; auto with lia. Qed.
399
Lemma nil_length_inv l : length l = 0  l = [].
400 401
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
402
Proof. by destruct i. Qed.
403
Lemma lookup_tail l i : tail l !! i = l !! S i.
404
Proof. by destruct l. Qed.
405 406
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
407
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
408 409 410 411 412
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
413
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
414 415 416 417 418 419 420 421 422
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
423 424 425
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
Proof.
427 428 429 430 431
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  * by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
432
Qed.
433
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
434
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
435 436
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
437
Lemma lookup_app_r l1 l2 i :
438
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
439 440 441 442 443 444 445 446 447 448 449
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
  * revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
      simplify_equality'; auto with lia.
    destruct (IH i) as [?|[??]]; auto with lia.
  * intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Qed.
450 451 452
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
453

454 455
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
Proof. by revert i; induction l; intros []; intros; f_equal'. Qed.
456
Lemma alter_length f l i : length (alter f i l) = length l.
457
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
458
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
459
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
460
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
461
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
462
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
463
Proof.
464
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
465
Qed.
466
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
467 468
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
469
Proof.
470
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
471
Qed.
472 473 474 475 476 477 478 479 480 481 482 483 484 485
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
  * intros Hy. assert (j < length l).
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
  * intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal'; auto. Qed.
486 487
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
Proof.
489
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
490 491 492
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
493 494
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
495
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
496
Lemma alter_app_r f l1 l2 i :
497
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
498
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
499 500
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
501 502 503 504
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
505 506
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
Proof. intros ?. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
507 508 509
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
510 511
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
512
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
513 514
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
515
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
516 517
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
518
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
519
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
520
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
521 522
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
523 524 525 526
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
527
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
528
Proof. induction l1; f_equal'; auto. Qed.
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
  * intros Hy. assert (j < length l).
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
  * intuition. by rewrite list_lookup_inserts by lia.
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

579
(** ** Properties of the [elem_of] predicate *)
580
Lemma not_elem_of_nil x : x  [].
581
Proof. by inversion 1. Qed.
582
Lemma elem_of_nil x : x  []  False.
583
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
584
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
585
Proof. destruct l. done. by edestruct 1; constructor. Qed.
586 587
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
588
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
589
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
590
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
591
Proof. rewrite elem_of_cons. tauto. Qed.
592
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
593
Proof.
594
  induction l1.
595
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
596
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
597
Qed.
598
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
599
Proof. rewrite elem_of_app. tauto. Qed.
600
Lemma elem_of_list_singleton x y : x  [y]  x = y.
601
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
602
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
603
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
604
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
605
Proof.
606 607
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
608
Qed.
609
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
610
Proof.
611 612
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
613
Qed.
614
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
615
Proof.
616
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
617
Qed.
618 619
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
620 621 622 623 624 625
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
  * induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
      setoid_rewrite elem_of_cons; naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
626 627
  * intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
      simplify_equality; try constructor; auto.
628
Qed.
629

630
(** ** Properties of the [NoDup] predicate *)
631 632
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
633
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
634
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
635
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
636
Proof. rewrite NoDup_cons. by intros [??]. Qed.
637
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
638
Proof. rewrite NoDup_cons. by intros [??]. Qed.
639
Lemma NoDup_singleton x : NoDup [x].
640
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
641
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
642
Proof.
643
  induction l; simpl.
644
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
645
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
646
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
647
Qed.
648
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
649 650 651 652 653 654 655
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
656 657
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
658 659 660 661 662 663
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
664 665
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
666
Proof.
667 668 669 670 671
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
672
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
673

674 675 676 677 678 679
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
680
    | x :: l =>
681 682 683 684 685 686 687 688
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
689
    end.
690
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
691 692 693 694
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
695
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
696 697 698 699
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
700
End no_dup_dec.
701

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

765
(** ** Properties of the [filter] function *)
766 767 768 769 770 771 772
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
773
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
774 775 776 777 778
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
779

780 781 782
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
783 784
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x)  l !! i = Some x  P x.
785
  Proof.
786 787 788
    revert i; induction l; intros [] ?;
      repeat (match goal with x : prod _ _ |- _ => destruct x end
              || simplify_option_equality); eauto.
789
  Qed.
790
  Lemma list_find_elem_of l x : x  l  P x  is_Some (list_find P l).
791
  Proof.
792
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
793
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
794 795 796
  Qed.
End find.

797
(** ** Properties of the [reverse] function *)
798 799
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
800
Lemma reverse_singleton x : reverse [x] = [x].
801
Proof. done. Qed.
802
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
803
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
804
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
805
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
806
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
807
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
808
Lemma reverse_length l : length (reverse l) = length l.
809
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
810
Lemma reverse_involutive l : reverse (reverse l) = l.
811
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
812 813 814 815 816 817 818 819 820 821