fin_maps.v 19 KB
Newer Older
1 2 3 4 5 6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
induction principles for finite maps and implements the tactic [simplify_map]
to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8
Require Export prelude.

9 10
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
11 12 13 14 15
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
16 17 18 19 20 21
(** Finiteness is axiomatized by requiring each map to have a finite domain.
Since we may have multiple implementations of finite sets, the [dom] function is
parametrized by an implementation of finite sets over the map's key type. *)
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
22 23 24
Class FinMap K M `{Lookup K M} `{ A, Empty (M A)}
    `{ `(f : A  B), FMap M f} `{PartialAlter K M} `{Dom K M} `{Merge M}
    `{ i j : K, Decision (i = j)} := {
25 26 27 28 29 30 31 32 33 34 35 36
  finmap_eq {A} (m1 m2 : M A) :
    ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i :
    ( : M A) !! i = None;
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
  lookup_fmap {A B} (f : A  B) (m : M A) i :
    (f <$> m) !! i = f <$> m !! i;
  elem_of_dom C {A} `{Collection K C} (m : M A) i :
    i  dom C m  is_Some (m !! i);
37
  merge_spec {A} f `{!PropHolds (f None None = None)}
Robbert Krebbers's avatar
Robbert Krebbers committed
38 39 40
    (m1 m2 : M A) i : merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
}.

41 42 43 44 45
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
significant enough performance loss to make including them in the finite map
axiomatization worthwhile. *)
46 47 48 49
Instance finmap_alter `{PartialAlter K M} : Alter K M := λ A f,
  partial_alter (fmap f).
Instance finmap_insert `{PartialAlter K M} : Insert K M := λ A k x,
  partial_alter (λ _, Some x) k.
50
Instance finmap_delete `{PartialAlter K M} : Delete K M := λ A,
51
  partial_alter (λ _, None).
52
Instance finmap_singleton `{PartialAlter K M} {A}
53
  `{Empty (M A)} : Singleton (K * A) (M A) := λ p, <[fst p:=snd p]>.
Robbert Krebbers's avatar
Robbert Krebbers committed
54

55 56
Definition list_to_map `{Insert K M} {A} `{Empty (M A)}
  (l : list (K * A)) : M A := insert_list l .
Robbert Krebbers's avatar
Robbert Krebbers committed
57

Robbert Krebbers's avatar
Robbert Krebbers committed
58
Instance finmap_union_with `{Merge M} : UnionWith M := λ A f,
59
  merge (union_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
60
Instance finmap_intersection_with `{Merge M} : IntersectionWith M := λ A f,
61
  merge (intersection_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
62
Instance finmap_difference_with `{Merge M} : DifferenceWith M := λ A f,
63
  merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
64

Robbert Krebbers's avatar
Robbert Krebbers committed
65 66 67 68 69 70 71 72 73 74
(** Two finite maps are disjoint if they do not have overlapping cells. *)
Instance finmap_disjoint `{Lookup K M} {A} : Disjoint (M A) := λ m1 m2,
   i, m1 !! i = None  m2 !! i = None.

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
Instance finmap_union `{Merge M} {A} : Union (M A) := union_with (λ x _ , x).

75
(** * General theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Section finmap.
77
Context `{FinMap K M} {A : Type}.
78 79 80 81

Global Instance finmap_subseteq: SubsetEq (M A) := λ m n,
   i x, m !! i = Some x  n !! i = Some x.
Global Instance: BoundedPreOrder (M A).
82
Proof. split; [firstorder |]. intros m i x. by rewrite lookup_empty. Qed.
83

84 85
Lemma lookup_weaken (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
86
Proof. auto. Qed.
87 88
Lemma lookup_weaken_None (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
89 90 91 92 93 94
Proof. rewrite !eq_None_not_Some. firstorder. Qed.
Lemma lookup_ne (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.

Lemma not_elem_of_dom C `{Collection K C} (m : M A) i :
  i  dom C m  m !! i = None.
95
Proof. by rewrite (elem_of_dom C), eq_None_not_Some. Qed.
96 97

Lemma finmap_empty (m : M A) : ( i, m !! i = None)  m = .
98
Proof. intros Hm. apply finmap_eq. intros. by rewrite Hm, lookup_empty. Qed.
99 100 101
Lemma dom_empty C `{Collection K C} : dom C ( : M A)  .
Proof.
  split; intro.
102
  * rewrite (elem_of_dom C), lookup_empty. by destruct 1.
103
  * solve_elem_of.
104 105 106 107
Qed.
Lemma dom_empty_inv C `{Collection K C} (m : M A) : dom C m    m = .
Proof.
  intros E. apply finmap_empty. intros. apply (not_elem_of_dom C).
108
  rewrite E. solve_elem_of.
109 110 111
Qed.

Lemma lookup_empty_not i : ¬is_Some (( : M A) !! i).
112
Proof. rewrite lookup_empty. by destruct 1. Qed.
113
Lemma lookup_empty_Some i (x : A) : ¬ !! i = Some x.
114
Proof. by rewrite lookup_empty. Qed.
115 116 117 118 119

Lemma partial_alter_compose (m : M A) i f g :
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
  intros. apply finmap_eq. intros ii. case (decide (i = ii)).
120 121
  * intros. subst. by rewrite !lookup_partial_alter.
  * intros. by rewrite !lookup_partial_alter_ne.
122 123 124 125 126 127 128
Qed.
Lemma partial_alter_comm (m : M A) i j f g :
  i  j 
 partial_alter f i (partial_alter g j m) = partial_alter g j (partial_alter f i m).
Proof.
  intros. apply finmap_eq. intros jj.
  destruct (decide (jj = j)).
129
  * subst. by rewrite lookup_partial_alter_ne,
130 131
     !lookup_partial_alter, lookup_partial_alter_ne.
  * destruct (decide (jj = i)).
132
    + subst. by rewrite lookup_partial_alter,
133
       !lookup_partial_alter_ne, lookup_partial_alter by congruence.
134
    + by rewrite !lookup_partial_alter_ne by congruence.
135 136 137 138 139 140
Qed.
Lemma partial_alter_self_alt (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
  intros. apply finmap_eq. intros ii.
  destruct (decide (i = ii)).
141 142
  * subst. by rewrite lookup_partial_alter.
  * by rewrite lookup_partial_alter_ne.
143 144
Qed.
Lemma partial_alter_self (m : M A) i : partial_alter (λ _, m !! i) i m = m.
145
Proof. by apply partial_alter_self_alt. Qed.
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

Lemma lookup_insert (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
Lemma lookup_insert_rev (m : M A) i x y : <[i:= x ]>m !! i = Some y  x = y.
Proof. rewrite lookup_insert. congruence. Qed.
Lemma lookup_insert_ne (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_comm (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_comm. Qed.

Lemma lookup_insert_Some (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
  * destruct (decide (i = j)); subst;
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
  * intros [[??]|[??]].
    + subst. apply lookup_insert.
165
    + by rewrite lookup_insert_ne.
166 167 168 169 170 171 172
Qed.
Lemma lookup_insert_None (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
  split.
  * destruct (decide (i = j)); subst;
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
173
  * intros [??]. by rewrite lookup_insert_ne.
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
Qed.

Lemma lookup_singleton_Some i j (x y : A) :
  {[(i, x)]} !! j = Some y  i = j  x = y.
Proof.
  unfold singleton, finmap_singleton.
  rewrite lookup_insert_Some, lookup_empty. simpl.
  intuition congruence.
Qed.
Lemma lookup_singleton_None i j (x : A) :
  {[(i, x)]} !! j = None  i  j.
Proof.
  unfold singleton, finmap_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
189 190 191 192 193
Lemma insert_singleton i (x y : A) : <[i:=y]>{[(i, x)]} = {[(i, y)]}.
Proof.
  unfold singleton, finmap_singleton, insert, finmap_insert.
  by rewrite <-partial_alter_compose.
Qed.
194 195

Lemma lookup_singleton i (x : A) : {[(i, x)]} !! i = Some x.
196
Proof. by rewrite lookup_singleton_Some. Qed.
197
Lemma lookup_singleton_ne i j (x : A) : i  j  {[(i, x)]} !! j = None.
198
Proof. by rewrite lookup_singleton_None. Qed.
199 200 201 202 203 204 205 206 207 208 209 210

Lemma lookup_delete (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.

Lemma lookup_delete_Some (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
  * destruct (decide (i = j)); subst;
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
211
  * intros [??]. by rewrite lookup_delete_ne.
212 213 214 215 216 217 218 219 220 221
Qed.
Lemma lookup_delete_None (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
  destruct (decide (i = j)).
  * subst. rewrite lookup_delete. tauto.
  * rewrite lookup_delete_ne; tauto.
Qed.

Lemma delete_empty i : delete i ( : M A) = .
222
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
223 224 225
Lemma delete_singleton i (x : A) : delete i {[(i, x)]} = .
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_comm (m : M A) i j : delete i (delete j m) = delete j (delete i m).
226
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_comm. Qed.
227 228
Lemma delete_insert_comm (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
229
Proof. intro. by apply partial_alter_comm. Qed.
230 231 232 233 234

Lemma delete_notin (m : M A) i : m !! i = None  delete i m = m.
Proof.
  intros. apply finmap_eq. intros j.
  destruct (decide (i = j)).
235 236
  * subst. by rewrite lookup_delete.
  * by apply lookup_delete_ne.
237 238 239 240 241
Qed.

Lemma delete_partial_alter (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
242
  intros. unfold delete, finmap_delete. rewrite <-partial_alter_compose.
243 244
  rapply partial_alter_self_alt. congruence.
Qed.
245
Lemma delete_partial_alter_dom C `{Collection K C} (m : M A) i f :
246 247 248 249 250 251 252 253 254 255 256
  i  dom C m  delete i (partial_alter f i m) = m.
Proof. rewrite (not_elem_of_dom C). apply delete_partial_alter. Qed.
Lemma delete_insert (m : M A) i x : m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma delete_insert_dom C `{Collection K C} (m : M A) i x :
  i  dom C m  delete i (<[i:=x]>m) = m.
Proof. rewrite (not_elem_of_dom C). apply delete_partial_alter. Qed.
Lemma insert_delete (m : M A) i x : m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, finmap_delete, insert, finmap_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
257
  by apply partial_alter_self_alt.
258 259 260 261 262 263
Qed.

Lemma elem_of_dom_delete C `{Collection K C} (m : M A) i j :
  i  dom C (delete j m)  i  j  i  dom C m.
Proof.
  rewrite !(elem_of_dom C). unfold is_Some.
264
  setoid_rewrite lookup_delete_Some. naive_solver.
265 266 267 268
Qed.
Lemma not_elem_of_dom_delete C `{Collection K C} (m : M A) i :
  i  dom C (delete i m).
Proof. apply (not_elem_of_dom C), lookup_delete. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
269

270 271 272 273 274 275 276 277 278 279 280 281
(** * Induction principles *)
(** We use the induction principle on finite collections to prove the
following induction principle on finite maps. *)
Lemma finmap_ind_alt C (P : M A  Prop) `{FinCollection K C} :
  P  
  ( i x m, i  dom C m  P m  P (<[i:=x]>m)) 
   m, P m.
Proof.
  intros Hemp Hinsert m.
  apply (collection_ind (λ X,  m, dom C m  X  P m)) with (dom C m).
  * solve_proper.
  * clear m. intros m Hm. rewrite finmap_empty.
282
    + done.
283
    + intros. rewrite <-(not_elem_of_dom C), Hm.
284
      by solve_elem_of.
285 286 287 288
  * clear m. intros i X Hi IH m Hdom.
    assert (is_Some (m !! i)) as [x Hx].
    { apply (elem_of_dom C).
      rewrite Hdom. clear Hdom.
289 290
      by solve_elem_of. }
    rewrite <-(insert_delete m i x) by done.
291
    apply Hinsert.
292
    { by apply (not_elem_of_dom_delete C). }
293 294 295
    apply IH. apply elem_of_equiv. intros.
    rewrite (elem_of_dom_delete C).
    esolve_elem_of.
296
  * done.
297 298 299 300 301 302 303 304 305 306 307 308 309 310
Qed.

(** We use the [listset] implementation to prove an induction principle that
does not mention the map's domain. *)
Lemma finmap_ind (P : M A  Prop) :
  P  
  ( i x m, m !! i = None  P m  P (<[i:=x]>m)) 
   m, P m.
Proof.
  setoid_rewrite <-(not_elem_of_dom (listset _)).
  apply (finmap_ind_alt (listset _) P).
Qed.

(** * Deleting and inserting multiple elements *)
311 312 313
Lemma lookup_delete_list (m : M A) is j :
  In j is  delete_list is m !! j = None.
Proof.
314
  induction is as [|i is]; simpl; [done |].
315
  intros [?|?].
316
  * subst. by rewrite lookup_delete.
317
  * destruct (decide (i = j)).
318
    + subst. by rewrite lookup_delete.
319 320 321 322 323
    + rewrite lookup_delete_ne; auto.
Qed.
Lemma lookup_delete_list_notin (m : M A) is j :
  ¬In j is  delete_list is m !! j = m !! j.
Proof.
324
  induction is; simpl; [done |].
325 326 327 328 329 330
  intros. rewrite lookup_delete_ne; tauto.
Qed.

Lemma delete_list_notin (m : M A) is :
  Forall (λ i, m !! i = None) is  delete_list is m = m.
Proof.
331
  induction 1; simpl; [done |].
332 333 334 335 336
  rewrite delete_notin; congruence.
Qed.
Lemma delete_list_insert_comm (m : M A) is j x :
  ¬In j is  delete_list is (<[j:=x]>m) = <[j:=x]>(delete_list is m).
Proof.
337
  induction is; simpl; [done |].
338 339 340
  intros. rewrite IHis, delete_insert_comm; tauto.
Qed.

341 342
Lemma lookup_insert_list (m : M A) l1 l2 i x :
  (y, ¬In (i,y) l1)  insert_list (l1 ++ (i,x) :: l2) m !! i = Some x.
343
Proof.
344
  induction l1 as [|[j y] l1 IH]; simpl.
345
  * intros. by rewrite lookup_insert.
346 347 348 349 350 351 352
  * intros Hy. rewrite lookup_insert_ne; naive_solver.
Qed.

Lemma lookup_insert_list_not_in (m : M A) l i :
  (y, ¬In (i,y) l)  insert_list l m !! i = m !! i.
Proof.
  induction l as [|[j y] l IH]; simpl.
353
  * done.
354
  * intros Hy. rewrite lookup_insert_ne; naive_solver.
355 356
Qed.

357
(** * Properties of the merge operation *)
358 359 360 361
Section merge.
  Context (f : option A  option A  option A).

  Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Robbert Krebbers's avatar
Robbert Krebbers committed
362
  Proof.
363
    intros ??. apply finmap_eq. intros.
364
    by rewrite !(merge_spec f), lookup_empty, (left_id None f).
Robbert Krebbers's avatar
Robbert Krebbers committed
365
  Qed.
366
  Global Instance: RightId (=) None f  RightId (=)  (merge f).
Robbert Krebbers's avatar
Robbert Krebbers committed
367
  Proof.
368
    intros ??. apply finmap_eq. intros.
369
    by rewrite !(merge_spec f), lookup_empty, (right_id None f).
Robbert Krebbers's avatar
Robbert Krebbers committed
370
  Qed.
371
  Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
372
  Proof. intros ??. apply finmap_eq. intros. by rewrite !(merge_spec f). Qed.
373 374 375 376 377

  Context `{!PropHolds (f None None = None)}.

  Lemma merge_spec_alt m1 m2 m :
    ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
  Proof.
379 380 381
    split; [| intro; subst; apply (merge_spec _) ].
    intros Hlookup. apply finmap_eq. intros. rewrite Hlookup.
    apply (merge_spec _).
Robbert Krebbers's avatar
Robbert Krebbers committed
382
  Qed.
383 384 385 386

  Lemma merge_comm m1 m2 :
    ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
    merge f m1 m2 = merge f m2 m1.
387
  Proof. intros. apply finmap_eq. intros. by rewrite !(merge_spec f). Qed.
388
  Global Instance: Commutative (=) f  Commutative (=) (merge f).
389
  Proof. intros ???. apply merge_comm. intros. by apply (commutative f). Qed.
390 391

  Lemma merge_assoc m1 m2 m3 :
392 393
    ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
          f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
394
    merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
395
  Proof. intros. apply finmap_eq. intros. by rewrite !(merge_spec f). Qed.
396
  Global Instance: Associative (=) f  Associative (=) (merge f).
397
  Proof. intros ????. apply merge_assoc. intros. by apply (associative f). Qed.
398 399
End merge.

400
(** * Properties of the union and intersection operation *)
401 402 403
Section union_intersection.
  Context (f : A  A  A).

Robbert Krebbers's avatar
Robbert Krebbers committed
404
  Lemma finmap_union_with_merge m1 m2 i x y :
405 406 407
    m1 !! i = Some x 
    m2 !! i = Some y 
    union_with f m1 m2 !! i = Some (f x y).
408
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
409
    intros Hx Hy. unfold union_with, finmap_union_with.
410
    by rewrite (merge_spec _), Hx, Hy.
411
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
412
  Lemma finmap_union_with_l m1 m2 i x :
413
    m1 !! i = Some x  m2 !! i = None  union_with f m1 m2 !! i = Some x.
414
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
415
    intros Hx Hy. unfold union_with, finmap_union_with.
416
    by rewrite (merge_spec _), Hx, Hy.
417
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
418
  Lemma finmap_union_with_r m1 m2 i y :
419
    m1 !! i = None  m2 !! i = Some y  union_with f m1 m2 !! i = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
420
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
421
    intros Hx Hy. unfold union_with, finmap_union_with.
422
    by rewrite (merge_spec _), Hx, Hy.
Robbert Krebbers's avatar
Robbert Krebbers committed
423
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
424
  Lemma finmap_union_with_None m1 m2 i :
425
    union_with f m1 m2 !! i = None  m1 !! i = None  m2 !! i = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
    unfold union_with, finmap_union_with. rewrite (merge_spec _).
428
    destruct (m1 !! i), (m2 !! i); compute; intuition congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
429 430
  Qed.

431 432 433 434 435 436 437 438 439
  Global Instance: LeftId (=)  (union_with f : M A  M A  M A) := _.
  Global Instance: RightId (=)  (union_with f : M A  M A  M A) := _.
  Global Instance:
    Commutative (=) f  Commutative (=) (union_with f : M A  M A  M A) := _.
  Global Instance:
    Associative (=) f  Associative (=) (union_with f : M A  M A  M A) := _.
  Global Instance:
    Idempotent (=) f  Idempotent (=) (union_with f : M A  M A  M A) := _.
End union_intersection.
Robbert Krebbers's avatar
Robbert Krebbers committed
440 441 442 443 444 445 446 447 448 449 450 451

Lemma finmap_union_Some (m1 m2 : M A) i x :
  (m1  m2) !! i = Some x 
    m1 !! i = Some x  (m1 !! i = None  m2 !! i = Some x).
Proof.
  unfold union, finmap_union, union_with, finmap_union_with.
  rewrite (merge_spec _).
  destruct (m1 !! i), (m2 !! i); compute; try intuition congruence.
Qed.
Lemma finmap_union_None (m1 m2 : M A) b :
  (m1  m2) !! b = None  m1 !! b = None  m2 !! b = None.
Proof. apply finmap_union_with_None. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
End finmap.
453

454 455
(** * The finite map tactic *)
(** The tactic [simplify_map by tac] simplifies finite map expressions
456
occuring in the conclusion and hypotheses. It uses [tac] to discharge generated
457
inequalities. *)
458
Tactic Notation "simplify_map" "by" tactic3(tac) := repeat
459
  match goal with
460 461
  | H1 : ?m !! ?i = Some ?x, H2 : ?m !! ?i = Some ?y |- _ =>
    assert (x = y) by congruence; subst y; clear H2
462 463
  | H : context[  !! _ ] |- _ => rewrite lookup_empty in H
  | H : context[ (<[_:=_]>_) !! _ ] |- _ => rewrite lookup_insert in H
464
  | H : context[ (<[_:=_]>_) !! _ ] |- _ => rewrite lookup_insert_ne in H by tac
465
  | H : context[ (delete _ _) !! _ ] |- _ => rewrite lookup_delete in H
466
  | H : context[ (delete _ _) !! _ ] |- _ => rewrite lookup_delete_ne in H by tac
467
  | H : context[ {[ _ ]} !! _ ] |- _ => rewrite lookup_singleton in H
468
  | H : context[ {[ _ ]} !! _ ] |- _ => rewrite lookup_singleton_ne in H by tac
469 470
  | |- context[  !! _ ] => rewrite lookup_empty
  | |- context[ (<[_:=_]>_) !! _ ] => rewrite lookup_insert
471
  | |- context[ (<[_:=_]>_) !! _ ] => rewrite lookup_insert_ne by tac
472
  | |- context[ (delete _ _) !! _ ] => rewrite lookup_delete
473
  | |- context[ (delete _ _) !! _ ] => rewrite lookup_delete_ne by tac
474
  | |- context[ {[ _ ]} !! _ ] => rewrite lookup_singleton
475
  | |- context[ {[ _ ]} !! _ ] => rewrite lookup_singleton_ne by tac
476 477
  end.
Tactic Notation "simplify_map" := simplify_map by auto.
478 479 480 481

Tactic Notation "simplify_map_equality" "by" tactic3(tac) :=
  repeat first [ progress (simplify_map by tac) | progress simplify_equality ].
Tactic Notation "simplify_map_equality" := simplify_map_equality by auto.