base.v 21.7 KB
Newer Older
1
2
3
4
5
6
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
9
10
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

11
12
13
14
15
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.

(** Ensure that [simpl] unfolds [id] and [compose] when fully applied. *)
16
17
18
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.

19
20
21
22
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
23
24
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26
27
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
28
29
30
Delimit Scope C_scope with C.
Global Open Scope C_scope.

31
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
32
33
34
35
36
37
38
39
40
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

41
42
43
Notation "(→)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( T →)" := (λ y, T  y) (only parsing) : C_scope.
Notation "(→ T )" := (λ y, y  T) (only parsing) : C_scope.
44

45
Notation "t $ r" := (t r)
46
  (at level 65, right associativity, only parsing) : C_scope.
47
48
49
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
50
51
52
53
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
54
55
56

(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
57
58
59
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

60
61
62
63
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
64
65
Class PropHolds (P : Prop) := prop_holds: P.

66
67
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
68
Proof. repeat intro; trivial. Qed.
69
70
71

Ltac solve_propholds :=
  match goal with
72
73
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
74
75
76
77
78
79
80
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
81
82
83
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

84
85
86
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
87
88
89
90
91
92
93
94
95
96
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, y  x) (only parsing) : C_scope.

97
98
99
100
101
102
103
104
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
105
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
106
107
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109
(** ** Operations on collections *)
110
(** We define operational type classes for the traditional operations and
111
relations on collections: the empty collection [∅], the union [(∪)],
112
113
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
114
115
116
117
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
118
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
119
120
121
122
123
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

124
125
126
127
128
Definition union_list `{Empty A}
  `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
129
Class Intersection A := intersection: A  A  A.
130
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
132
133
134
135
136
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
137
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
139
140
141
142
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

143
144
145
146
147
148
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
149
Class SubsetEq A := subseteq: A  A  Prop.
150
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
152
153
154
155
156
157
158
159
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.

160
Hint Extern 0 (_  _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
162

Class ElemOf A B := elem_of: A  B  Prop.
163
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
165
166
167
168
169
170
171
172
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
173
174
175
176
177
178
179
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

180
181
182
Instance generic_disjoint `{ElemOf A B} : Disjoint B | 100 :=
  λ X Y,  x, x  X  x  Y.

183
(** ** Operations on maps *)
184
185
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
186
The function lookup [m !! k] should yield the element at key [k] in [m]. *)
187
188
Class Lookup (K : Type) (M : Type  Type) :=
  lookup:  {A}, K  M A  option A.
189
190
191
192
193
194
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
195
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
196
197
198

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
199
Class Insert (K : Type) (M : Type  Type) :=
200
201
202
203
  insert:  {A}, K  A  M A  M A.
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
204
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
205

206
207
208
209
210
211
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
Class Delete (K : Type) (M : Type  Type) :=
  delete:  {A}, K  M A  M A.
Instance: Params (@delete) 4.
212
Arguments delete _ _ _ _ !_ !_ / : simpl nomatch.
213
214

(** The function [alter f k m] should update the value at key [k] using the
215
216
function [f], which is called with the original value. *)
Class Alter (K : Type) (M : Type  Type) :=
217
218
  alter:  {A}, (A  A)  K  M A  M A.
Instance: Params (@alter) 4.
219
Arguments alter _ _ _ _ _ !_ !_ / : simpl nomatch.
220
221

(** The function [alter f k m] should update the value at key [k] using the
222
223
224
225
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
Class PartialAlter (K : Type) (M : Type  Type) :=
226
227
  partial_alter:  {A}, (option A  option A)  K  M A  M A.
Instance: Params (@partial_alter) 4.
228
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
229
230
231

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
232
233
234
Class Dom (K : Type) (M : Type  Type) :=
  dom:  {A} C `{Empty C} `{Union C} `{Singleton K C}, M A  C.
Instance: Params (@dom) 8.
235
Arguments dom _ _ _ _ _ _ _ _ !_ / : simpl nomatch.
236
237
238
239

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)]
provided that [k] is a member of either [m1] or [m2].*)
240
Class Merge (M : Type  Type) :=
241
242
  merge:  {A}, (option A  option A  option A)  M A  M A  M A.
Instance: Params (@merge) 3.
243
Arguments merge _ _ _ _ !_ !_ / : simpl nomatch.
244
245
246
247
248

(** We lift the insert and delete operation to lists of elements. *)
Definition insert_list `{Insert K M} {A} (l : list (K * A)) (m : M A) : M A :=
  fold_right (λ p, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
249
Definition delete_list `{Delete K M} {A} (l : list K) (m : M A) : M A :=
250
  fold_right delete m l.
251
Instance: Params (@delete_list) 4.
252
253
254
255

(** The function [union_with f m1 m2] should yield the union of [m1] and [m2]
using the function [f] to combine values of members that are in both [m1] and
[m2]. *)
256
Class UnionWith (M : Type  Type) :=
257
  union_with:  {A}, (A  A  A)  M A  M A  M A.
258
259
260
Instance: Params (@union_with) 3.

(** Similarly for the intersection and difference. *)
261
Class IntersectionWith (M : Type  Type) :=
262
  intersection_with:  {A}, (A  A  A)  M A  M A  M A.
263
Instance: Params (@intersection_with) 3.
264
Class DifferenceWith (M : Type  Type) :=
265
  difference_with:  {A}, (A  A  option A)  M A  M A  M A.
266
Instance: Params (@difference_with) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
267

268
269
270
271
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
272
273
274
275
276
277
278
279
280
281
282
283
Class Injective {A B} R S (f : A  B) :=
  injective:  x y : A, S (f x) (f y)  R x y.
Class Idempotent {A} R (f : A  A  A) :=
  idempotent:  x, R (f x x) x.
Class Commutative {A B} R (f : B  B  A) :=
  commutative:  x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : A  A  A) :=
  left_id:  x, R (f i x) x.
Class RightId {A} R (i : A) (f : A  A  A) :=
  right_id:  x, R (f x i) x.
Class Associative {A} R (f : A  A  A) :=
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
284
285
286
287
Class LeftAbsorb {A} R (i : A) (f : A  A  A) :=
  left_absorb:  x, R (f i x) i.
Class RightAbsorb {A} R (i : A) (f : A  A  A) :=
  right_absorb:  x, R (f x i) i.
Robbert Krebbers's avatar
Robbert Krebbers committed
288
289
290
291
292
293
294

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
295
296
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
297

298
299
300
(** The following lemmas are more specific versions of the projections of the
above type classes. These lemmas allow us to enforce Coq not to use the setoid
rewriting mechanism. *)
301
302
Lemma idempotent_eq {A} (f : A  A  A) `{!Idempotent (=) f} x :
  f x x = x.
303
Proof. auto. Qed.
304
305
Lemma commutative_eq {A B} (f : B  B  A) `{!Commutative (=) f} x y :
  f x y = f y x.
306
Proof. auto. Qed.
307
308
Lemma left_id_eq {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x :
  f i x = x.
309
Proof. auto. Qed.
310
311
Lemma right_id_eq {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x :
  f x i = x.
312
Proof. auto. Qed.
313
314
Lemma associative_eq {A} (f : A  A  A) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
315
Proof. auto. Qed.
316
317
318
319
320
321
Lemma left_absorb_eq {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.
322

323
(** ** Monadic operations *)
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMap := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well.
We use these type classes merely for convenient overloading of notations and do
not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
340
341
342
Section monad_ops.
  Context (M : Type  Type).

343
344
345
  Class MBind {A B} (f : A  M B) := mbind: M A  M B.
  Class MJoin {A} := mjoin: M (M A)  M A.
  Class FMap {A B} (f : A  B) := fmap: M A  M B.
Robbert Krebbers's avatar
Robbert Krebbers committed
346
347
End monad_ops.

348
Instance: Params (@mbind) 4.
349
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.
350
Instance: Params (@mjoin) 3.
351
Arguments mjoin {_ _ _} !_ / : simpl nomatch.
352
Instance: Params (@fmap) 4.
353
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
355

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
356
357
Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, next at level 35, right associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
358
359
Infix "<$>" := fmap (at level 65, right associativity, only parsing) : C_scope.

360
361
(** ** Axiomatization of ordered structures *)
(** A pre-order equiped with a smallest element. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
362
363
364
365
366
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty x :   x
}.

367
368
369
370
(** We do not include equality in the following interfaces so as to avoid the
need for proofs that the  relations and operations respect setoid equality.
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
371
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
372
  bjsl_preorder :>> BoundedPreOrder A;
Robbert Krebbers's avatar
Robbert Krebbers committed
373
374
375
376
377
378
379
380
381
382
  subseteq_union_l x y : x  x  y;
  subseteq_union_r x y : y  x  y;
  union_least x y z : x  z  y  z  x  y  z
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : x  y  x;
  subseteq_intersection_r x y : x  y  y;
  intersection_greatest x y z : z  x  z  y  z  x  y
}.
383
384
385
386
387
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
    `{Union A} `{Intersection A} := {
  lbl_bjsl :>> BoundedJoinSemiLattice A;
  lbl_msl :>> MeetSemiLattice A
}.
388
389
390
391
(** ** Axiomatization of collections *)
(** The class [Collection A C] axiomatizes a collection of type [C] with
elements of type [A]. Since [C] is not dependent on [A], we use the monomorphic
[Map] type class instead of the polymorphic [FMap]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Class Map A C := map: (A  A)  (C  C).
393
394
Instance: Params (@map) 3.
Class Collection A C `{ElemOf A C} `{Empty C} `{Union C}
Robbert Krebbers's avatar
Robbert Krebbers committed
395
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C} := {
396
  not_elem_of_empty (x : A) : x  ;
397
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
Robbert Krebbers's avatar
Robbert Krebbers committed
398
399
400
401
402
403
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_map f X (x : A) : x  map f X   y, x = f y  y  X
}.

404
405
406
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
407
Class Elements A C := elements: C  list A.
408
Instance: Params (@elements) 3.
409
410
411
412
413
414

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Union C}
    `{Intersection C} `{Difference C} `{Singleton A C} `{Map A C}
    `{Elements A C} `{ x y : A, Decision (x = y)} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
415
416
417
  fin_collection :>> Collection A C;
  elements_spec X x : x  X  In x (elements X);
  elements_nodup X : NoDup (elements X)
418
419
420
}.
Class Size C := size: C  nat.
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
421

422
423
424
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
425
Class Fresh A C := fresh: C  A.
426
Instance: Params (@fresh) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Class FreshSpec A C `{!Fresh A C} `{!ElemOf A C} := {
428
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
429
430
431
  is_fresh (X : C) : fresh X  X
}.

432
433
434
(** * Miscellaneous *)
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
435
Proof. injection 1; trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
436

437
438
439
440
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x y  R y x.
Proof. intuition. Qed.

441
442
443
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
444
445
446
447
448
449
450
451
452
453
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

454
(** ** Products *)
455
456
457
458
459
460
Definition fst_map {A A' B} (f : A  A') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : B  B') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y)  R2 (snd x) (snd y).
Robbert Krebbers's avatar
Robbert Krebbers committed
461
462
463

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
464
465
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
466
  Proof. firstorder eauto. Qed.
467
468
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
469
  Proof. firstorder eauto. Qed.
470
471
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
472
  Proof. firstorder eauto. Qed.
473
474
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
475
476
477
478
479
480
481
482
483
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

484
(** ** Other *)
485
486
Definition lift_relation {A B} (R : relation A)
  (f : B  A) : relation B := λ x y, R (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
487
488
Definition lift_relation_equivalence {A B} (R : relation A) (f : B  A) :
  Equivalence R  Equivalence (lift_relation R f).
489
Proof. unfold lift_relation. firstorder auto. Qed.
490
491
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
492
493

Instance:  A B (x : B), Commutative (=) (λ _ _ : A, x).
494
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
495
Instance:  A (x : A), Associative (=) (λ _ _ : A, x).
496
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
497
Instance:  A, Associative (=) (λ x _ : A, x).
498
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
499
Instance:  A, Associative (=) (λ _ x : A, x).
500
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
501
Instance:  A, Idempotent (=) (λ x _ : A, x).
502
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
503
Instance:  A, Idempotent (=) (λ _ x : A, x).
504
Proof. red. trivial. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
505

506
507
Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
508
Proof. red. trivial. Qed.
509
510
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
511
Proof. red. trivial. Qed.
512
513
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f   x, PropHolds (R (f x x) x).
514
Proof. red. trivial. Qed.