fin_maps.v 69.7 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7 8
From Coq Require Import Permutation.
From stdpp Require Export relations vector orders.
9

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31 32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33 34 35 36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39 40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
43
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45
}.

46 47 48
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
49 50
significant performance loss to make including them in the finite map interface
worthwhile. *)
51 52 53 54 55
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
56
  partial_alter (λ _, None).
57
Instance map_singleton `{PartialAlter K A M, Empty M} :
58
  SingletonM K A M := λ i x, <[i:=x]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
59

60
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
61
  fold_right (λ p, <[p.1:=p.2]>) .
62 63 64
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
65

66 67 68 69 70 71
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
72

73 74
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76 77
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
78
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
79
  λ m,  i x, m !! i = Some x  P i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
80 81 82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
83
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85 86 87 88 89 90
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
91
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
92
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94 95 96 97

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
98
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
99 100 101
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

102 103
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
104
Instance map_difference `{Merge M} {A} : Difference (M A) :=
105
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
106

107 108 109 110 111 112
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

113 114 115 116
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
117 118
(** ** Setoids *)
Section setoid.
119 120
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
121 122
  Proof.
    split.
123 124
    - by intros m i.
    - by intros m1 m2 ? i.
125
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129 130
  Qed.
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
131
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134 135 136 137 138 139
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
140 141 142
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
  Proof. by intros ???; apply insert_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
143 144 145 146 147 148 149 150 151
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
152
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
153
    (() ==> () ==> ())%signature f g 
154
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156 157 158
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
159
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
160 161 162
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
163
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
164 165
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
166 167
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
  Qed.
169 170 171 172 173
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
174
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
175
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
176
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
177 178 179
End setoid.

(** ** General properties *)
180 181 182 183 184
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
185
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
186 187
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
188
Global Instance: EmptySpec (M A).
189
Proof.
190 191
  intros A m. rewrite !map_subseteq_spec.
  intros i x. by rewrite lookup_empty.
192
Qed.
193 194
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
  split; [intros m i; by destruct (m !! i); simpl|].
196
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
197
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
198
    done || etrans; eauto.
199
Qed.
200
Global Instance: PartialOrder (() : relation (M A)).
201
Proof.
202 203 204
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
205 206 207
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
208
Proof. rewrite !map_subseteq_spec. auto. Qed.
209 210 211 212 213 214
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
215 216
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
217 218
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
219 220
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
221 222 223 224 225 226 227 228 229
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
230 231 232
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
233 234
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
235 236

(** ** Properties of the [partial_alter] operation *)
237 238 239
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
240 241
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
242 243
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
244 245
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
246 247
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
248
Qed.
249
Lemma partial_alter_commute {A} f g (m : M A) i j :
250
  i  j  partial_alter f i (partial_alter g j m) =
251 252
    partial_alter g j (partial_alter f i m).
Proof.
253 254 255 256
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
257
  - by rewrite lookup_partial_alter,
258
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
259
  - by rewrite !lookup_partial_alter_ne by congruence.
260 261 262 263
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
264 265
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
266
Qed.
267
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
268
Proof. by apply partial_alter_self_alt. Qed.
269
Lemma partial_alter_subseteq {A} f (m : M A) i :
270
  m !! i = None  m  partial_alter f i m.
271 272 273 274
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
275
Lemma partial_alter_subset {A} f (m : M A) i :
276
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
277
Proof.
278 279 280 281
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
282 283 284
Qed.

(** ** Properties of the [alter] operation *)
285 286
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
287
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
288
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
289
Proof. unfold alter. apply lookup_partial_alter. Qed.
290
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
291
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
292 293 294 295 296 297 298 299 300
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
301 302 303 304
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
305
  destruct (decide (i = j)) as [->|?].
306
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
307
  - rewrite lookup_alter_ne by done. naive_solver.
308 309 310 311
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
312 313
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
314
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
315 316
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
317
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
319
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
320
  by rewrite lookup_alter_ne by done.
321 322 323 324 325 326 327 328 329 330 331
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
332
  - destruct (decide (i = j)) as [->|?];
333
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
334
  - intros [??]. by rewrite lookup_delete_ne.
335
Qed.
336 337 338
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
339 340 341
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
342 343
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
344 345 346
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
347
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
348 349 350 351 352 353 354
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
355
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
356
Proof.
357 358
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
376
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
377 378 379
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
380
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
381
  m1  m2  delete i m1  delete i m2.
382 383 384 385
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
386
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
387
Proof.
388 389 390
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
391
Qed.
392
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
393 394 395 396 397
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
398
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
399
Proof. rewrite lookup_insert. congruence. Qed.
400
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
401
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
402 403
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
404 405 406 407 408 409 410
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
411
  - destruct (decide (i = j)) as [->|?];
412
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
413
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
414
Qed.
415 416 417
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
418 419 420
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
421 422 423
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
424
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
426 427 428 429 430 431 432 433
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
434 435
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
436
Qed.
437
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
438
Proof. apply partial_alter_subseteq. Qed.
439
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
440 441
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
442
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
443
Proof.
444 445 446
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
447 448
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
449
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
450
Proof.
451 452 453 454
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
455 456
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
457
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
458
Proof.
459 460
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
461 462
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
463 464
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
465
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
466
Proof.
467 468 469
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
470 471
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
472
  m1 !! i = None  <[i:=x]> m1  m2 
473 474
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
475
  intros Hi Hm1m2. exists (delete i m2). split_and?.
476
  - rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
477
    by rewrite lookup_insert.
478 479
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
480
Qed.
481
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
482
Proof. done. Qed.
483 484 485

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
486
  {[i := x]} !! j = Some y  i = j  x = y.
487
Proof.
488
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
489
Qed.
490
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
491
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
492
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
493
Proof. by rewrite lookup_singleton_Some. Qed.
494
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
495
Proof. by rewrite lookup_singleton_None. Qed.
496
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
497 498 499 500
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
501
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
502
Proof.
503
  unfold singletonM, map_singleton, insert, map_insert.
504 505
  by rewrite <-partial_alter_compose.
Qed.
506
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
507
Proof.
508
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
509 510
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
511 512
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
513
  i  j  alter f i {[j := x]} = {[j := x]}.
514
Proof.
515 516
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
517 518
Qed.

519 520 521 522 523
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
524 525 526
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
527 528
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
529 530 531 532 533
Qed.
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
534 535
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
536
Qed.
537
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
538 539 540
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
541
Lemma omap_singleton {A B} (f : A  option B) i x y :
542
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
543
Proof.
544 545
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
546
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
547 548 549 550 551
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
552 553 554 555 556 557
Lemma map_fmap_setoid_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
558 559 560 561 562 563
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
564 565 566 567 568 569
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
570

571 572
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
573
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
574
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
575
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
576
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
577 578 579 580 581
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
582
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
583
  destruct (decide (i = j)) as [->|].
584 585
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
586
Qed.
587
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
588
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
589
Proof.
590 591
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
592
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
593
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
594 595
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
596
  map_of_list l !! i = Some x  (i,x)  l.
597
Proof.
598 599 600
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
601 602
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
603
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
604
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
605
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
606
  i  l.*1  map_of_list l !! i = None.
607
Proof.
608 609
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
610 611
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
612
  map_of_list l !! i = None  i  l.*1.
613
Proof.
614
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
615
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
616 617
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
618 619
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
620
  i  l.*1  map_of_list l !! i = None.
621
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
622
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
623
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
624 625 626 627 628
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
629
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
630
Proof.
631
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
632 633
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
634
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
635 636 637
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
638
    by auto using NoDup_fst_map_to_list.
639 640
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
641
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
642
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
643
Lemma map_to_list_inj {A} (m1 m2 : M A) :
644
  map_to_list m1  map_to_list m2  m1 = m2.
645
Proof.
646
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
647
  auto using map_of_list_proper, NoDup_fst_map_to_list.
648
Qed.
649 650 651 652 653 654
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
655
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
656 657 658 659 660
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
661
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
662
Proof.
663
  intros. apply map_of_list_inj; csimpl.
664 665
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
666
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
667
    rewrite elem_of_map_to_list in Hlookup. congruence.
668
  - by rewrite !map_of_to_list.
669
Qed.
670 671 672 673 674 675
Lemma map_to_list_contains {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 `contains` map_to_list m2.
Proof.
  intros; apply NoDup_contains; auto using NoDup_map_to_list.
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
676
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
677 678 679 680
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
681
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
682
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
683
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
684 685
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
686
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
687 688
Proof.
  intros Hperm. apply map_to_list_inj.
689 690 691
  assert (i  l.*1  NoDup (l.*1)) as [].
  { rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
    auto using NoDup_fst_map_to_list. }
692 693 694
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
695 696 697 698
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
699
  exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
700
Qed.
701

702 703 704 705 706
(** Properties of the imap function *)
Lemma lookup_imap {A B} (f : K  A  option B) m i :
  map_imap f m !! i = m !! i = f i.
Proof.
  unfold map_imap; destruct (m !! i = f i) as [y|] eqn:Hi; simpl.
707
  - destruct (m !! i) as [x|] eqn:?; simplify_eq/=.
708 709
    apply elem_of_map_of_list_1_help.
    { apply elem_of_list_omap; exists (i,x); split;
710
        [by apply elem_of_map_to_list|by simplify_option_eq]. }
711
    intros y'; rewrite elem_of_list_omap; intros ([i' x']&Hi'&?).
712
    by rewrite elem_of_map_to_list in Hi'; simplify_option_eq.
713
  - apply not_elem_of_map_of_list; rewrite elem_of_list_fmap.
714
    intros ([i' x]&->&Hi'); simplify_eq/=.
715
    rewrite elem_of_list_omap in Hi'; destruct Hi' as ([j y]&Hj&?).
716
    rewrite elem_of_map_to_list in Hj; simplify_option_eq.
717 718
Qed.