fin_maps.v 61.6 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5 6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8 9
Require Export ars vector orders.

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31 32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33 34 35 36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39 40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42 43 44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46
}.

47 48 49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50 51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52 53 54 55 56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58 59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63 64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67 68 69 70 71 72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74 75
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
76
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  λ m,  i x, m !! i = Some x  P i x.
78 79 80 81 82 83 84 85 86
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
87 88 89 90 91 92 93
Definition map_Forall3 `{ A, Lookup K A (M A)} {A B C}
    (R : A  B  C  Prop) (m1 : M A) (m2 : M B) (m3 : M C): Prop :=  i,
  match m1 !! i, m2 !! i, m3 !! i with
  | Some x, Some y, Some z => R x y z
  | None, None, None => True
  | _, _, _ => False
  end.
94

95 96 97 98
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
99 100 101 102 103

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
104
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
105 106 107
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

108 109
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
110
Instance map_difference `{Merge M} {A} : Difference (M A) :=
111
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
112

113 114 115 116
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

117 118 119 120 121 122 123 124
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
125
Global Instance: BoundedPreOrder (M A).
126 127 128 129 130 131
Proof.
  repeat split.
  * intros m. by rewrite map_subseteq_spec.
  * intros m1 m2 m3. rewrite !map_subseteq_spec. naive_solver.
  * intros m. rewrite !map_subseteq_spec. intros i x. by rewrite lookup_empty.
Qed.
132
Global Instance : PartialOrder (@subseteq (M A) _).
133
Proof.
134 135
  split; [apply _ |]. intros ??. rewrite !map_subseteq_spec.
  intros ??. apply map_eq; intros i. apply option_eq. naive_solver.
136 137 138
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
139
Proof. rewrite !map_subseteq_spec. auto. Qed.
140 141 142 143 144 145
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
146 147
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
148 149
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
150 151
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
152 153 154 155 156 157 158 159 160
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
161 162 163
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
164 165

(** ** Properties of the [partial_alter] operation *)
166 167 168
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
169 170
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
171 172
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
173 174
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
175 176
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
177
Qed.
178
Lemma partial_alter_commute {A} f g (m : M A) i j :
179
  i  j  partial_alter f i (partial_alter g j m) =
180 181
    partial_alter g j (partial_alter f i m).
Proof.
182 183 184 185 186 187 188
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
189 190 191 192
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
193 194
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
195
Qed.
196
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
197
Proof. by apply partial_alter_self_alt. Qed.
198
Lemma partial_alter_subseteq {A} f (m : M A) i :
199
  m !! i = None  m  partial_alter f i m.
200 201 202 203
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
204
Lemma partial_alter_subset {A} f (m : M A) i :
205
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
206
Proof.
207 208 209 210
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
211 212 213
Qed.

(** ** Properties of the [alter] operation *)
214 215
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
216
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
217
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
218
Proof. unfold alter. apply lookup_partial_alter. Qed.
219
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
220
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
221 222 223 224 225 226 227 228 229
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
230 231 232 233
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
234
  destruct (decide (i = j)) as [->|?].
235 236 237 238 239 240
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
241 242
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
243
Qed.
244
Lemma alter_None {A} (f : A  A) m i : m !! i = None  alter f i m = m.
245
Proof.
246 247
  intros Hi. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?Hi, ?lookup_alter_ne.
248 249 250 251 252 253 254 255 256 257 258
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
259
  * destruct (decide (i = j)) as [->|?];
260 261 262 263 264 265
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
266 267
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
268 269 270
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
271
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
272 273 274 275 276 277 278
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
279
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
280
Proof.
281 282
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
300
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
301 302 303
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
304
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
305
  m1  m2  delete i m1  delete i m2.
306 307 308 309
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
310
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
311
Proof.
312 313 314
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
315
Qed.
316
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
317 318 319 320 321
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
322
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
323
Proof. rewrite lookup_insert. congruence. Qed.
324
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
325 326 327 328 329 330 331 332
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
333
  * destruct (decide (i = j)) as [->|?];
334
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
335
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
336 337 338 339
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
340 341 342
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
343
Qed.
344
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
345
Proof. apply partial_alter_subseteq. Qed.
346
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
347 348
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
349
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
350
Proof.
351 352 353
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
354 355
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
356
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
357
Proof.
358 359 360 361
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
362 363
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
364
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
365
Proof.
366 367
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
368
  * rewrite lookup_insert. congruence.
369
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
370 371
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
372
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
373
Proof.
374 375 376
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
377 378
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
379
  m1 !! i = None  <[i:=x]> m1  m2 
380 381 382
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
383
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
384 385 386 387
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.
388 389 390 391 392 393 394
Lemma fmap_insert {A B} (f : A  B) (m : M A) i x :
  f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  * by rewrite lookup_fmap, !lookup_insert.
  * by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
395 396 397

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
398
  {[i, x]} !! j = Some y  i = j  x = y.
399 400
Proof.
  unfold singleton, map_singleton.
401
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
402
Qed.
403
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
404 405 406 407
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
408
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
409
Proof. by rewrite lookup_singleton_Some. Qed.
410
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
411
Proof. by rewrite lookup_singleton_None. Qed.
412
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
413 414 415 416
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
417
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
418 419 420 421
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
422
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
423
Proof.
424
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
425 426 427 428
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
429
  i  j  alter f i {[j,x]} = {[j,x]}.
430
Proof.
431 432
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
433 434
Qed.

435 436 437 438 439 440
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.

441 442
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
443
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
444
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
445 446
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup (fst <$> map_to_list m).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
447
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
448
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
449
Proof.
450
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
451
  rewrite NoDup_cons, elem_of_cons, elem_of_list_fmap.
452 453 454
  intros [Hl ?] [?|?]; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|]; [|rewrite lookup_insert_ne; auto].
  destruct Hl. by exists (j,x).
455 456
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
457
  map_of_list l !! i = Some x  (i,x)  l.
458
Proof.
459 460 461
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
462 463
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
464 465
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
466
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
467
  i  fst <$> l  map_of_list l !! i = None.
468
Proof.
469 470
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
471 472
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
473
  map_of_list l !! i = None  i  fst <$> l.
474
Proof.
475
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
476 477 478 479 480 481
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
482
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
483
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
484
  NoDup (fst <$> l1)  l1  l2  map_of_list l1 = map_of_list l2.
485 486 487 488 489
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
490 491
  NoDup (fst <$> l1)  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2  l1  l2.
492
Proof.
493
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
494 495
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
496
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
497 498 499
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
500
    by auto using NoDup_fst_map_to_list.
501 502
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
503
  NoDup (fst <$> l)  map_to_list (map_of_list l)  l.
504
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
505
Lemma map_to_list_inj {A} (m1 m2 : M A) :
506
  map_to_list m1  map_to_list m2  m1 = m2.
507
Proof.
508
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
509
  auto using map_of_list_proper, NoDup_fst_map_to_list.
510
Qed.
511
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
512 513 514 515 516
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
517
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
518
Proof.
519
  intros. apply map_of_list_inj; csimpl.
520 521
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
522
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
523 524 525
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
526
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
527 528 529 530
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
531
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
532
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
533
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
534 535
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
536
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
537 538 539
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
540
  { rewrite <-Hperm. auto using NoDup_fst_map_to_list. }
541
  csimpl in *. rewrite NoDup_cons in Hnodup. destruct Hnodup.
542 543 544
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
545 546 547 548 549 550
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
551

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
(** ** Properties of conversion from collections *)
Lemma lookup_map_of_collection {A} `{FinCollection K C}
    (f : K  option A) X i x :
  map_of_collection f X !! i = Some x  i  X  f i = Some x.
Proof.
  assert (NoDup (fst <$> omap (λ i, (i,) <$> f i) (elements X))).
  { induction (NoDup_elements X) as [|i' l]; csimpl; [constructor|].
    destruct (f i') as [x'|]; csimpl; auto; constructor; auto.
    rewrite elem_of_list_fmap. setoid_rewrite elem_of_list_omap.
    by intros (?&?&?&?&?); simplify_option_equality. }
  unfold map_of_collection; rewrite <-elem_of_map_of_list by done.
  rewrite elem_of_list_omap. setoid_rewrite elem_of_elements; split.
  * intros (?&?&?); simplify_option_equality; eauto.
  * intros [??]; exists i; simplify_option_equality; eauto.
Qed.

(** ** Induction principles *)
569
Lemma map_ind {A} (P : M A  Prop) :
570
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
571
Proof.
572
  intros ? Hins. cut ( l, NoDup (fst <$> l)   m, map_to_list m  l  P m).
573
  { intros help m.
574
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
575 576 577
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
578
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
579 580 581 582
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
583
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
584 585 586 587
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
588
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
589 590 591 592 593
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
594
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
595 596 597 598 599 600
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

601
(** ** Properties of the [map_Forall] predicate *)
602
Section map_Forall.
603 604
Context {A} (P : K  A  Prop).

605
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
606 607
Proof.
  rewrite Forall_forall. split.
608 609
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
610 611 612
Qed.

Context `{ i x, Decision (P i x)}.
613
Global Instance map_Forall_dec m : Decision (map_Forall P m).
614 615
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
616
    by rewrite map_Forall_to_list.
617
Defined.
618 619
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
620 621
Proof.
  split.
622
  * rewrite map_Forall_to_list. intros Hm.
623 624 625 626
    apply (not_Forall_Exists _), Exists_exists in Hm.
    destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
  * intros (i&x&?&?) Hm. specialize (Hm i x). tauto.
Qed.
627
End map_Forall.
628 629 630 631 632 633

(** ** Properties of the [merge] operation *)
Lemma merge_Some {A B C} (f : option A  option B  option C)
    `{!PropHolds (f None None = None)} m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
634 635
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
636 637 638 639 640 641 642 643
Qed.

Section merge.
Context {A} (f : option A  option A  option A).

Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
644
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
645 646 647 648
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
649
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
Qed.

Context `{!PropHolds (f None None = None)}.

Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
669
  intros ????. apply merge_associative. intros. by apply (associative_L f).
670 671
Qed.
Lemma merge_idempotent m1 :
672
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
673 674
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
675
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

Lemma partial_alter_merge (g g1 g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_l (g g1 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_r (g g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.

Lemma insert_merge_l m1 m2 i x :
  f (Some x) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=x]>m1) m2.
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_l.
Qed.
Lemma insert_merge_r m1 m2 i x :
  f (m1 !! i) (Some x) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=x]>m2).
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_r.
Qed.
End merge.

719 720 721 722 723 724 725 726 727 728 729 730 731 732
(** ** Properties on the [map_Forall2] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_Forall2_alt (m1 : M A) (m2 : M B) :
  map_Forall2 R P Q m1 m2  map_Forall (λ _ P, Is_true P) (merge f m1 m2).
733 734
Proof.
  split.
735 736
  * intros Hm i P'; rewrite lookup_merge by done; intros.
    specialize (Hm i). destruct (m1 !! i), (m2 !! i);
737
      simplify_equality'; auto using bool_decide_pack.
738 739 740 741 742 743 744 745 746 747
  * intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); simplify_equality'; auto;
      by eapply bool_decide_unpack, Hm.
Qed.
Global Instance map_Forall2_dec `{ x y, Decision (R x y),  x, Decision (P x),
   y, Decision (Q y)} m1 m2 : Decision (map_Forall2 R P Q m1 m2).
Proof.
  refine (cast_if (decide (map_Forall (λ _ P, Is_true P) (merge f m1 m2))));
    abstract by rewrite map_Forall2_alt.
Defined.
748 749
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
750 751 752 753 754
Lemma map_not_Forall2 (m1 : M A) (m2 : M B) :
  ¬map_Forall2 R P Q m1 m2   i,
    ( x y, m1 !! i = Some x  m2 !! i = Some y  ¬R x y)
     ( x, m1 !! i = Some x  m2 !! i = None  ¬P x)
     ( y, m1 !! i = None  m2 !! i = Some y  ¬Q y).
755 756
Proof.
  split.
757 758 759 760 761
  * rewrite map_Forall2_alt, (map_not_Forall _). intros (i&?&Hm&?); exists i.
    rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); naive_solver auto 2 using bool_decide_pack.
  * by intros [i[(x&y&?&?&?)|[(x&?&?&?)|(y&?&?&?)]]] Hm;
      specialize (Hm i); simplify_option_equality.
762
Qed.
763
End Forall2.
764 765

(** ** Properties on the disjoint maps *)
766 767 768 769 770 771
Lemma map_disjoint_spec {A} (m1 m2 : M A) :
  m1  m2   i x y, m1 !! i = Some x  m2 !! i = Some y  False.
Proof.
  split; intros Hm i; specialize (Hm i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
772 773 774 775 776 777 778 779 780
Lemma map_disjoint_alt {A} (m1 m2 : M A) :
  m1  m2   i, m1 !! i = None  m2 !! i = None.
Proof.
  split; intros Hm1m2 i; specialize (Hm1m2 i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_disjoint {A} (m1 m2 : M A) :
  ¬m1  m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
Proof.
781 782
  unfold disjoint, map_disjoint. rewrite map_not_Forall2 by solve_decision.
  split; [|naive_solver].
783
  intros [i[(x&y&?&?&?)|[(x&?&?&[])|(y&?&?&[])]]]; naive_solver.
784 785
Qed.
Global Instance: Symmetric (@disjoint (M A) _).
786
Proof. intros A m1 m2. rewrite !map_disjoint_spec. naive_solver. Qed.
787
Lemma map_disjoint_empty_l {A} (m : M A) :   m.
788
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
789
Lemma map_disjoint_empty_r {A} (m : M A) : m  .
790
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
791
Lemma map_disjoint_weaken {A} (m1 m1' m2 m2' : M A) :
792
  m1'  m2'  m1  m1'  m2  m2'  m1  m2.
793
Proof. rewrite !map_subseteq_spec, !map_disjoint_spec. eauto. Qed.
794 795 796 797 798 799 800
Lemma map_disjoint_weaken_l {A} (m1 m1' m2  : M A) :
  m1'  m2  m1  m1'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_weaken_r {A} (m1 m2 m2' : M A) :
  m1  m2'  m2  m2'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_Some_l {A} (m1 m2 : M A) i x:
801
  m1  m2  m1 !! i = Some x  m2 !! i = None.
802
Proof. rewrite map_disjoint_spec, eq_None_not_Some. intros ?? [??]; eauto. Qed.
803
Lemma map_disjoint_Some_r {A} (m1 m2 : M A) i x:
804
  m1  m2  m2 !! i = Some x  m1 !! i = None.
805
Proof. rewrite (symmetry_iff ()). apply map_disjoint_Some_l. Qed.
806
Lemma map_disjoint_singleton_l {A} (m : M A) i x : {[i, x]}  m  m !! i = None.
807
Proof.