list.v 93.3 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
5

6
Require Import Permutation.
7
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
10 11 12
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
13
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

Robbert Krebbers's avatar
Robbert Krebbers committed
15 16 17
Notation Forall_nil_2 := Forall_nil.
Notation Forall_cons_2 := Forall_cons.

18 19 20
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
21
Notation take_drop := firstn_skipn.
22 23 24
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
25 26 27 28 29 30 31
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

32 33 34
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Instance list_lookup {A} : Lookup nat A (list A) :=
36
  fix go (i : nat) (l : list A) {struct l} : option A :=
37 38 39 40 41
  match l with
  | [] => None
  | x :: l =>
    match i with
    | 0 => Some x
42
    | S i => @lookup _ _ _ go i l
43 44
    end
  end.
45 46 47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
Instance list_alter {A} (f : A  A) : AlterD nat A (list A) f :=
49
  fix go (i : nat) (l : list A) {struct l} :=
50 51 52 53 54
  match l with
  | [] => []
  | x :: l =>
    match i with
    | 0 => f x :: l
55
    | S i => x :: @alter _ _ _ f go i l
56 57
    end
  end.
58 59 60 61

(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
62 63
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
64 65 66 67 68
  match l with
  | [] => []
  | x :: l =>
    match i with
    | 0 => l
69
    | S i => x :: @delete _ _ go i l
70
    end
71
  end.
72 73 74

(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Instance list_insert {A} : Insert nat A (list A) := λ i x,
76
  alter (λ _, x) i.
77

78 79
(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l :=
  match l with
  | [] => []
  | x :: l =>
     if decide (P x)
     then x :: @filter _ _ (@go) _ _ l
     else @filter _ _ (@go) _ _ l
  end.

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with
  | 0 => []
  | S n => x :: replicate n x
  end.

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l =>
    match n with
    | 0 => []
    | S n => x :: resize n y l
    end
  end.
Arguments resize {_} !_ _ !_.

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.

Definition foldl {A B} (f : A  B  A) : A  list B  A :=
  fix go a l :=
  match l with
  | [] => a
  | x :: l => go (f a x) l
  end.

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap {A B} (f : A  B) : FMapD list f :=
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => f x :: @fmap _ _ _ f go l
  end.
Instance list_bind {A B} (f : A  list B) : MBindD list f :=
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => f x ++ @mbind _ _ _ f go l
  end.
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
  match ls with
  | [] => []
  | l :: ls => l ++ @mjoin _ go _ ls
  end.

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
  match l with
  | [] => []
  | x :: l => f n x :: go (S n) l
  end.
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.

Definition ifoldr {A B} (f : nat  B  A  A)
    (a : nat  A) : nat  list B  A :=
  fix go (n : nat) (l : list B) : A :=
  match l with
  | nil => a n
  | b :: l => f n b (go (S n) l)
  end.

(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with
  | x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2
  | _ , _ => []
  end.
Notation zip := (zip_with pair).

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
  | [] => [ [x] ]
  | y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
  match l with
  | [] => [ [] ]
  | x :: l => permutations l = interleave x
  end.

190 191
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
192 193
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
Robbert Krebbers's avatar
Robbert Krebbers committed
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.

  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
       if decide_rel (=) x1 x2
       then snd_map (x1 ::) (go l1 l2)
       else (x1 :: l1, x2 :: l2, [])
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.

  Definition strip_prefix (l1 l2 : list A) := snd $ fst $ max_prefix_of l1 l2.
  Definition strip_suffix (l1 l2 : list A) := snd $ fst $ max_suffix_of l1 l2.
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
216

217 218 219 220 221 222 223
(** A list [l1] is a sub list of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_cons x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
  | sublist_cons_skip x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).

224 225 226 227 228 229 230 231
(** The [same_length] view allows convenient induction over two lists with the
same length. *)
Inductive same_length {A B} : list A  list B  Prop :=
  | same_length_nil : same_length [] []
  | same_length_cons x y l k :
     same_length l k  same_length (x :: l) (y :: k).

(** * Basic tactics on lists *)
232 233 234
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
235 236 237
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
  repeat (simpl in H || rewrite app_length in H);
238
  exfalso; lia.
239
Tactic Notation "discriminate_list_equality" :=
240
  solve [repeat_on_hyps (fun H => discriminate_list_equality H)].
241

242 243 244 245 246 247 248
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
Lemma cons_inv {A} (l1 l2 : list A) x1 x2 :
  x1 :: l1 = x2 :: l2  x1 = x2  l1 = l2.
Proof. by injection 1. Qed.

249 250
Ltac simplify_list_equality := repeat
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
251 252 253
  | H : _ :: _ = _ :: _ |- _ =>
     apply cons_inv in H; destruct H
     (* to circumvent bug #2939 in some situations *)
254
  | H : _ ++ _ = _ ++ _ |- _ => first
Robbert Krebbers's avatar
Robbert Krebbers committed
255 256
     [ apply app_inj_tail in H; destruct H
     | apply app_inv_head in H
257
     | apply app_inv_tail in H ]
Robbert Krebbers's avatar
Robbert Krebbers committed
258 259 260
  | H : [?x] !! ?i = Some ?y |- _ =>
     destruct i; [change (Some x = Some y) in H|discriminate]
  | _ => progress simplify_equality
261 262
  | H : _ |- _ => discriminate_list_equality H
  end.
263

264 265
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
266 267
Context {A : Type}.

Robbert Krebbers's avatar
Robbert Krebbers committed
268 269 270 271
Global Instance:  x : A, Injective (=) (=) (x ::).
Proof. by injection 1. Qed.
Global Instance:  l : list A, Injective (=) (=) (:: l).
Proof. by injection 1. Qed.
272 273 274 275
Global Instance:  k : list A, Injective (=) (=) (k ++).
Proof. intros ???. apply app_inv_head. Qed.
Global Instance:  k : list A, Injective (=) (=) (++ k).
Proof. intros ???. apply app_inv_tail. Qed.
276 277 278 279 280 281
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
282

Robbert Krebbers's avatar
Robbert Krebbers committed
283 284 285 286 287
Lemma app_inj (l1 k1 l2 k2 : list A) :
  length l1 = length k1 
  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.

288
Lemma list_eq (l1 l2 : list A) : ( i, l1 !! i = l2 !! i)%C  l1 = l2.
289 290
Proof.
  revert l2. induction l1; intros [|??] H.
291
  * done.
292 293
  * discriminate (H 0).
  * discriminate (H 0).
294 295
  * f_equal; [by injection (H 0) |].
    apply IHl1. intro. apply (H (S _)).
296
Qed.
297 298
Lemma list_eq_nil (l : list A) : ( i, l !! i = None)  l = nil.
Proof. intros. by apply list_eq. Qed.
299

300 301
Global Instance list_eq_dec {dec :  x y : A, Decision (x = y)} :  l k,
  Decision (l = k) := list_eq_dec dec.
302 303
Definition list_singleton_dec (l : list A) :
  { x | l = [x] } + { length l  1 }.
Robbert Krebbers's avatar
Robbert Krebbers committed
304 305 306 307 308 309 310
Proof.
 by refine (
  match l with
  | [x] => inleft (x  _)
  | _ => inright _
  end).
Defined.
311

312 313 314
Global Instance: Proper (Permutation ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.

315 316 317 318 319
Lemma nil_or_length_pos (l : list A) : l = []  length l  0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length (l : list A) : length l = 0  l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
320
Proof. by destruct i. Qed.
321
Lemma lookup_tail (l : list A) i : tail l !! i = l !! S i.
322
Proof. by destruct l. Qed.
323

324 325
Lemma lookup_lt_length (l : list A) i :
  is_Some (l !! i)  i < length l.
326
Proof.
327 328 329 330 331
  revert i. induction l.
  * split; by inversion 1.
  * intros [|?]; simpl.
    + split; eauto with arith.
    + by rewrite <-NPeano.Nat.succ_lt_mono.
332
Qed.
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
Lemma lookup_lt_length_1 (l : list A) i :
  is_Some (l !! i)  i < length l.
Proof. apply lookup_lt_length. Qed.
Lemma lookup_lt_length_alt (l : list A) i x :
  l !! i = Some x  i < length l.
Proof. intros Hl. by rewrite <-lookup_lt_length, Hl. Qed.
Lemma lookup_lt_length_2 (l : list A) i :
  i < length l  is_Some (l !! i).
Proof. apply lookup_lt_length. Qed.

Lemma lookup_ge_length (l : list A) i :
  l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_length. lia. Qed.
Lemma lookup_ge_length_1 (l : list A) i :
  l !! i = None  length l  i.
Proof. by rewrite lookup_ge_length. Qed.
Lemma lookup_ge_length_2 (l : list A) i :
  length l  i  l !! i = None.
Proof. by rewrite lookup_ge_length. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
353 354 355 356 357 358 359 360 361 362 363 364 365
Lemma list_eq_length_eq (l1 l2 : list A) :
  length l2 = length l1 
  ( i x y, l1 !! i = Some x  l2 !! i = Some y  x = y) 
  l1 = l2.
Proof.
  intros Hlength Hlookup. apply list_eq. intros i.
  destruct (l2 !! i) as [x|] eqn:E.
  * feed inversion (lookup_lt_length_2 l1 i) as [y].
    { pose proof (lookup_lt_length_alt l2 i x E). lia. }
    f_equal. eauto.
  * rewrite lookup_ge_length in E |- *. lia.
Qed.

366 367 368 369 370 371 372 373 374 375 376
Lemma lookup_app_l (l1 l2 : list A) i :
  i < length l1 
  (l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_l_Some (l1 l2 : list A) i x :
  l1 !! i = Some x 
  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_length_alt. Qed.

Lemma lookup_app_r (l1 l2 : list A) i :
  (l1 ++ l2) !! (length l1 + i) = l2 !! i.
377
Proof.
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
  revert i.
  induction l1; intros [|i]; simpl in *; simplify_equality; auto.
Qed.
Lemma lookup_app_r_alt (l1 l2 : list A) i :
  length l1  i 
  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply lookup_app_r.
Qed.
Lemma lookup_app_r_Some (l1 l2 : list A) i x :
  l2 !! i = Some x 
  (l1 ++ l2) !! (length l1 + i) = Some x.
Proof. by rewrite lookup_app_r. Qed.
Lemma lookup_app_r_Some_alt (l1 l2 : list A) i x :
  length l1  i 
  l2 !! (i - length l1) = Some x 
  (l1 ++ l2) !! i = Some x.
Proof. intro. by rewrite lookup_app_r_alt. Qed.

Lemma lookup_app_inv (l1 l2 : list A) i x :
  (l1 ++ l2) !! i = Some x 
  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
Proof.
  revert i.
  induction l1; intros [|i] ?; simpl in *; simplify_equality; auto.
404 405
Qed.

406
Lemma list_lookup_middle (l1 l2 : list A) (x : A) :
407
  (l1 ++ x :: l2) !! length l1 = Some x.
408
Proof. by induction l1; simpl. Qed.
409

410 411 412 413 414 415 416 417 418
Lemma alter_length (f : A  A) l i :
  length (alter f i l) = length l.
Proof. revert i. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma insert_length (l : list A) i x :
  length (<[i:=x]>l) = length l.
Proof. apply alter_length. Qed.

Lemma list_lookup_alter (f : A  A) l i :
  alter f i l !! i = f <$> l !! i.
419
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
420
Lemma list_lookup_alter_ne (f : A  A) l i j :
421 422 423 424 425
  i  j  alter f i l !! j = l !! j.
Proof.
  revert i j. induction l; [done|].
  intros [|i] [|j] ?; try done. apply (IHl i). congruence.
Qed.
426 427 428 429 430 431 432 433 434 435 436 437
Lemma list_lookup_insert (l : list A) i x :
  i < length l 
  <[i:=x]>l !! i = Some x.
Proof.
  intros Hi. unfold insert, list_insert.
  rewrite list_lookup_alter.
  by feed inversion (lookup_lt_length_2 l i).
Qed.
Lemma list_lookup_insert_ne (l : list A) i j x :
  i  j  <[i:=x]>l !! j = l !! j.
Proof. apply list_lookup_alter_ne. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
438 439 440 441 442 443 444 445 446 447 448
Lemma list_lookup_other (l : list A) i x :
  length l  1 
  l !! i = Some x 
   j y, j  i  l !! j = Some y.
Proof.
  intros Hl Hi.
  destruct i; destruct l as [|x0 [|x1 l]]; simpl in *; simplify_equality.
  * by exists 1 x1.
  * by exists 0 x0.
Qed.

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
Lemma alter_app_l (f : A  A) (l1 l2 : list A) i :
  i < length l1 
  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof.
  revert i.
  induction l1; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma alter_app_r (f : A  A) (l1 l2 : list A) i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof.
  revert i.
  induction l1; intros [|?]; simpl in *; f_equal; auto.
Qed.
Lemma alter_app_r_alt (f : A  A) (l1 l2 : list A) i :
  length l1  i 
  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
Lemma insert_app_l (l1 l2 : list A) i x :
  i < length l1 
  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. apply alter_app_l. Qed.
Lemma insert_app_r (l1 l2 : list A) i x :
  <[length l1 + i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. apply alter_app_r. Qed.
Lemma insert_app_r_alt (l1 l2 : list A) i x :
  length l1  i 
  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof. apply alter_app_r_alt. Qed.

Lemma insert_consecutive_length (l : list A) i k :
  length (insert_consecutive i k l) = length l.
Proof. revert i. by induction k; intros; simpl; rewrite ?insert_length. Qed.
485

486 487 488 489
Lemma delete_middle (l1 l2 : list A) x :
  delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
Proof. induction l1; simpl; f_equal; auto. Qed.

490
(** ** Properties of the [elem_of] predicate *)
491 492 493 494 495 496
Lemma not_elem_of_nil (x : A) : x  [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil (x : A) : x  []  False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv (l : list A) : ( x, x  l)  l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
497
Lemma elem_of_cons (l : list A) x y :
498
  x  y :: l  x = y  x  l.
499 500
Proof.
  split.
501 502
  * inversion 1; subst. by left. by right.
  * intros [?|?]; subst. by left. by right.
503
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
504 505 506 507
Lemma not_elem_of_cons (l : list A) x y :
  x  y :: l  x  y  x  l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app (l1 l2 : list A) x :
508
  x  l1 ++ l2  x  l1  x  l2.
509
Proof.
510 511 512 513
  induction l1.
  * split; [by right|]. intros [Hx|]; [|done].
    by destruct (elem_of_nil x).
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
514
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
515 516 517 518
Lemma not_elem_of_app (l1 l2 : list A) x :
  x  l1 ++ l2  x  l1  x  l2.
Proof. rewrite elem_of_app. tauto. Qed.

519 520
Lemma elem_of_list_singleton (x y : A) : x  [y]  x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
521

522 523 524
Global Instance elem_of_list_permutation_proper (x : A) :
  Proper (Permutation ==> iff) (x ).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
525

Robbert Krebbers's avatar
Robbert Krebbers committed
526
Lemma elem_of_list_split (l : list A) x :
527 528 529 530 531 532
  x  l   l1 l2, l = l1 ++ x :: l2.
Proof.
  induction 1 as [x l|x y l ? [l1 [l2 ?]]].
  * by eexists [], l.
  * subst. by exists (y :: l1) l2.
Qed.
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)} :
   (x : A) l, Decision (x  l).
Proof.
 intros x. refine (
  fix go l :=
  match l return Decision (x  l) with
  | [] => right (not_elem_of_nil _)
  | y :: l => cast_if_or (decide_rel (=) x y) (go l)
  end); clear go dec; subst; try (by constructor); by inversion 1.
Defined.

Lemma elem_of_list_lookup_1 (l : list A) x :
  x  l   i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH].
  * by exists 0.
  * destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_2 (l : list A) i x :
  l !! i = Some x  x  l.
Proof.
  revert i. induction l; intros [|i] ?;
    simpl; simplify_equality; constructor; eauto.
Qed.
Lemma elem_of_list_lookup (l : list A) x :
  x  l   i, l !! i = Some x.
560
Proof.
561 562
  firstorder eauto using
    elem_of_list_lookup_1, elem_of_list_lookup_2.
563
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
564

565
(** ** Properties of the [NoDup] predicate *)
566 567 568 569 570 571 572 573
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
Lemma NoDup_cons (x : A) l : NoDup (x :: l)  x  l  NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 (x : A) l : NoDup (x :: l)  x  l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 (x : A) l : NoDup (x :: l)  NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
574
Lemma NoDup_singleton (x : A) : NoDup [x].
575 576
Proof. constructor. apply not_elem_of_nil. constructor. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
577
Lemma NoDup_app (l k : list A) :
578
  NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
579
Proof.
580 581 582 583
  induction l; simpl.
  * rewrite NoDup_nil.
    setoid_rewrite elem_of_nil. naive_solver.
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
584
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
585 586
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
587
Global Instance NoDup_proper:
588 589 590 591 592 593 594 595
  Proper (Permutation ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
596

597 598 599 600 601 602 603 604
Lemma NoDup_Permutation (l k : list A) :
  NoDup l  NoDup k  ( x, x  l  x  k)  Permutation l k.
Proof.
  intros Hl. revert k. induction Hl as [|x l Hin ? IH].
  * intros k _ Hk.
    rewrite (elem_of_nil_inv k); [done |].
    intros x. rewrite <-Hk, elem_of_nil. intros [].
  * intros k Hk Hlk.
Robbert Krebbers's avatar
Robbert Krebbers committed
605
    destruct (elem_of_list_split k x) as [l1 [l2 ?]]; subst.
606 607 608 609 610 611 612 613
    { rewrite <-Hlk. by constructor. }
    rewrite <-Permutation_middle, NoDup_cons in Hk.
    destruct Hk as [??].
    apply Permutation_cons_app, IH; [done |].
    intros y. specialize (Hlk y).
    rewrite <-Permutation_middle, !elem_of_cons in Hlk.
    naive_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
614

615 616
Global Instance NoDup_dec {dec :  x y : A, Decision (x = y)} :
     (l : list A), Decision (NoDup l) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
617 618
  fix NoDup_dec l :=
  match l return Decision (NoDup l) with
619
  | [] => left NoDup_nil_2
Robbert Krebbers's avatar
Robbert Krebbers committed
620
  | x :: l =>
621 622
    match decide_rel () x l with
    | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
Robbert Krebbers's avatar
Robbert Krebbers committed
623 624
    | right Hin =>
      match NoDup_dec l with
625 626
      | left H => left (NoDup_cons_2 _ _ Hin H)
      | right H => right (H  NoDup_cons_12 _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
627 628 629 630
      end
    end
  end.

631 632
Section remove_dups.
  Context `{! x y : A, Decision (x = y)}.
633

634 635 636 637 638 639
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
640

641 642 643 644 645 646
  Lemma elem_of_remove_dups l x :
    x  remove_dups l  x  l.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
647

648 649 650 651 652 653
  Lemma remove_dups_nodup l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End remove_dups.
654

655
(** ** Properties of the [filter] function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
656 657 658 659 660 661 662 663 664 665 666 667 668
Lemma elem_of_list_filter `{ x : A, Decision (P x)} l x :
  x  filter P l  P x  x  l.
Proof.
  unfold filter. induction l; simpl; repeat case_decide;
     rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
Qed.
Lemma filter_nodup P `{ x : A, Decision (P x)} l :
  NoDup l  NoDup (filter P l).
Proof.
  unfold filter. induction 1; simpl; repeat case_decide;
    rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
Qed.

669
(** ** Properties of the [reverse] function *)
670 671
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
672 673
Lemma reverse_singleton (x : A) : reverse [x] = [x].
Proof. done. Qed.
674 675 676 677 678 679 680 681 682 683
Lemma reverse_cons (l : list A) x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc (l : list A) x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app (l1 l2 : list A) :
  reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length (l : list A) : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive (l : list A) : reverse (reverse l) = l.
684
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
685

686
(** ** Properties of the [take] function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
Lemma take_nil n :
  take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app (l k : list A) :
  take (length l) (l ++ k) = l.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma take_app_alt (l k : list A) n :
  n = length l 
  take n (l ++ k) = l.
Proof. intros Hn. by rewrite Hn, take_app. Qed.
Lemma take_app_le (l k : list A) n :
  n  length l 
  take n (l ++ k) = take n l.
Proof.
  revert n;
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_app_ge (l k : list A) n :
  length l  n 
  take n (l ++ k) = l ++ take (n - length l) k.
Proof.
  revert n;
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_ge (l : list A) n :
  length l  n 
  take n l = l.
Proof.
  revert n.
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.

Lemma take_take (l : list A) n m :
  take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; simpl; f_equal; auto. Qed.
Lemma take_idempotent (l : list A) n :
  take n (take n l) = take n l.
Proof. by rewrite take_take, Min.min_idempotent. Qed.

Lemma take_length (l : list A) n :
  length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; simpl; f_equal; done. Qed.
Lemma take_length_alt (l : list A) n :
  n  length l 
  length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.

Lemma lookup_take (l : list A) n i :
  i < n  take n l !! i = l !! i.
Proof.
  revert n i. induction l; intros [|n] i ?; trivial.
  * auto with lia.
  * destruct i; simpl; auto with arith.
Qed.
Lemma lookup_take_ge (l : list A) n i :
  n  i  take n l !! i = None.
Proof.
  revert n i.
  induction l; intros [|?] [|?] ?; simpl; auto with lia.
Qed.
Lemma take_alter (f : A  A) l n i :
  n  i  take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  * by rewrite !lookup_take_ge.
  * by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert (l : list A) n i x :
  n  i  take n (<[i:=x]>l) = take n l.
Proof take_alter _ _ _ _.

758
(** ** Properties of the [drop] function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
Lemma drop_nil n :
  drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_app (l k : list A) :
  drop (length l) (l ++ k) = k.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma drop_app_alt (l k : list A) n :
  n = length l 
  drop n (l ++ k) = k.
Proof. intros Hn. by rewrite Hn, drop_app. Qed.
Lemma drop_length (l : list A) n :
  length (drop n l) = length l - n.
Proof.
  revert n. by induction l; intros [|i]; simpl; f_equal.
Qed.
Lemma drop_all (l : list A) :
  drop (length l) l = [].
Proof. induction l; simpl; auto. Qed.
Lemma drop_all_alt (l : list A) n :
  n = length l 
  drop n l = [].
Proof. intros. subst. by rewrite drop_all. Qed.

Lemma lookup_drop (l : list A) n i :
  drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter (f : A  A) l n i  :
  i < n  drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert (l : list A) n i x :
  i < n  drop n (<[i:=x]>l) = drop n l.
Proof drop_alter _ _ _ _.

795 796 797 798 799
Lemma delete_take_drop (l : list A) i :
  delete i l = take i l ++ drop (S i) l.
Proof. revert i. induction l; intros [|?]; simpl; auto using f_equal. Qed.

(** ** Properties of the [replicate] function *)
800 801 802 803 804
Lemma replicate_length n (x : A) : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n (x : A) i :
  i < n 
  replicate n x !! i = Some x.
805
Proof.
806 807 808 809 810 811 812 813 814
  revert i.
  induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma lookup_replicate_inv n (x y : A) i :
  replicate n x !! i = Some y  y = x  i < n.
Proof.
  revert i.
  induction n; intros [|?]; naive_solver auto with lia.
Qed.
815 816 817
Lemma replicate_S n (x : A) :
  replicate (S n) x = x :: replicate  n x.
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
Lemma replicate_plus n m (x : A) :
  replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; simpl; f_equal; auto. Qed.

Lemma take_replicate n m (x : A) :
  take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma take_replicate_plus n m (x : A) :
  take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m (x : A) :
  drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma drop_replicate_plus n m (x : A) :
  drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.

835 836 837 838 839 840 841 842
Lemma reverse_replicate n (x : A) :
  reverse (replicate n x) = replicate n x.
Proof.
  induction n as [|n IH]; [done|].
  simpl. rewrite reverse_cons, IH. change [x] with (replicate 1 x).
  by rewrite <-replicate_plus, plus_comm.
Qed.

843
(** ** Properties of the [resize] function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
Lemma resize_spec (l : list A) n x :
  resize n x l = take n l ++ replicate (n - length l) x.
Proof.
  revert n.
  induction l; intros [|?]; simpl; f_equal; auto.
Qed.
Lemma resize_0 (l : list A) x :
  resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n (x : A) :
  resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. simpl. f_equal. lia. Qed.
Lemma resize_ge (l : list A) n x :
  length l  n 
  resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le (l : list A) n x :
  n  length l 
  resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (NPeano.Nat.sub_0_le _ _)) by done.
865
  simpl. by rewrite (right_id [] (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
Qed.

Lemma resize_all (l : list A) x :
  resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt (l : list A) n x :
  n = length l 
  resize n x l = l.
Proof. intros. subst. by rewrite resize_all. Qed.

Lemma resize_plus (l : list A) n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
  revert n m.
  induction l; intros [|?] [|?]; simpl; f_equal; auto.
881
  * by rewrite plus_0_r, (right_id [] (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
  * by rewrite replicate_plus.
Qed.
Lemma resize_plus_eq (l : list A) n m x :
  length l = n 
  resize (n + m) x l = l ++ replicate m x.
Proof.
  intros. subst.
  by rewrite resize_plus, resize_all, drop_all, resize_nil.
Qed.

Lemma resize_app_le (l1 l2 : list A) n x :
  n  length l1 
  resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros.
  by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app_ge (l1 l2 : list A) n x :
  length l1  n 
  resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
  intros.
904
  rewrite !resize_spec, take_app_ge, (associative (++)) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
  do 2 f_equal. rewrite app_length. lia.
Qed.

Lemma resize_length (l : list A) n x : length (resize n x l) = n.
Proof.
  rewrite resize_spec, app_length, replicate_length, take_length. lia.
Qed.
Lemma resize_replicate (x : A) n m :
  resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; simpl; f_equal; auto. Qed.

Lemma resize_resize (l : list A) n m x :
  n  m 
  resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite !resize_nil, resize_replicate.
  * intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_idempotent (l : list A) n x :
  resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.

Lemma resize_take_le (l : list A) n m x :
  n  m 
  resize n x (take m l) = resize n x l.
Proof.
  revert n m.
  induction l; intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_take_eq (l : list A) n x :
  resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.

Lemma take_resize (l : list A) n m x :
  take n (resize m x l) = resize (min n m) x l.
Proof.
  revert n m.
  induction l; intros [|?] [|?]; simpl; f_equal; auto using take_replicate.
Qed.
Lemma take_resize_le (l : list A) n m x :
  n  m 
  take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_eq (l : list A) n x :
  take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_length_resize (l : list A) n x :
  length l  n 
  take (length l) (resize n x l) = l.
Proof. intros. by rewrite take_resize_le, resize_all. Qed.
Lemma take_length_resize_alt (l : list A) n m x :
  m = length l 
  m  n 
  take m (resize n x l) = l.
Proof. intros. subst. by apply take_length_resize. Qed.
Lemma take_resize_plus (l : list A) n m x :
  take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.

Lemma drop_resize_le (l : list A) n m x :
  n  m 
  drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  * intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_plus (l : list A) n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
976

977
(** ** Properties of the [sublist] predicate *)
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
Lemma sublist_nil_l (l : list A) :
  sublist [] l.
Proof. induction l; try constructor; auto. Qed.
Lemma sublist_nil_r (l : list A) :
  sublist l []  l = [].
Proof. split. by inversion 1. intros. subst. constructor. Qed.

Lemma sublist_app_skip_l (k : list A) l1 l2 :
  sublist l1 l2 
  sublist l1 (k ++ l2).
Proof. induction k; try constructor; auto. Qed.
Lemma sublist_app_skip_r (k : list A) l1 l2 :
  sublist l1 l2 
  sublist l1 (l2 ++ k).
Proof. induction 1; simpl; try constructor; auto using sublist_nil_l. Qed.

Lemma sublist_cons_r (x : A) l k :
  sublist l (x :: k)  sublist l k   l', l = x :: l'  sublist l' k.
Proof.
  split.
  * inversion 1; eauto.
  * intros [?|(?&?&?)]; subst; constructor; auto.
Qed.
Lemma sublist_cons_l (x : A) l k :
  sublist (x :: l) k   k1 k2, k = k1 ++ x :: k2  sublist l k2.
Proof.
  split.
  * intros Hlk. induction k as [|y k IH]; inversion Hlk.
    + eexists [], k. by repeat constructor.
    + destruct IH as (k1 & k2 & ? & ?); subst; auto.
      by exists (y :: k1) k2.
  * intros (k1 & k2 & ? & ?). subst.
    by apply sublist_app_skip_l, sublist_cons.
Qed.

Lemma sublist_app_compat (l1 l2 k1 k2 : list A) :
  sublist l1 l2  sublist k1 k2 
  sublist (l1 ++ k1) (l2 ++ k2).
Proof. induction 1; simpl; try constructor; auto. Qed.

Lemma sublist_app_r (l k1 k2 : list A) :
  sublist l (k1 ++ k2)   l1 l2,
    l = l1 ++ l2  sublist l1 k1  sublist l2 k2.
Proof.
  split.
  * revert l k2. induction k1 as [|y k1 IH]; intros l k2; simpl.
    { eexists [], l. by repeat constructor. }
    rewrite sublist_cons_r. intros [?|(l' & ? &?)]; subst.
    + destruct (IH l k2) as (l1&l2&?&?&?); trivial; subst.
      exists l1 l2. auto using sublist_cons_skip.
    + destruct (IH l' k2) as (l1&l2&?&?&?); trivial; subst.
      exists (y :: l1) l2. auto using sublist_cons.
  * intros (?&?&?&?&?); subst. auto using sublist_app_compat.
Qed.
Lemma sublist_app_l (l1 l2 k : list A) :
  sublist (l1 ++ l2) k   k1 k2,
    k = k1 ++ k2  sublist l1 k1  sublist l2 k2.
Proof.
  split.
  * revert l2 k. induction l1 as [|x l1 IH]; intros l2 k; simpl.
    { eexists [], k. by repeat constructor. }
    rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
    destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
    exists (k1 ++ x :: h1) h2. rewrite <-(associative (++)).
    auto using sublist_app_skip_l, sublist_cons.
  * intros (?&?&?&?&?); subst. auto using sublist_app_compat.
Qed.

Global Instance: PreOrder (@sublist A).
Proof.
  split.
  * intros l. induction l; constructor; auto.
  * intros l1 l2 l3 Hl12. revert l3. induction Hl12.
    + auto using sublist_nil_l.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_app_skip_l, sublist_cons.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_app_skip_l, sublist_cons_skip.
Qed.

Lemma sublist_length (l1 l2 : list A) :
  sublist l1 l2  length l1  length l2.
Proof. induction 1; simpl; auto with arith. Qed.

Lemma sublist_take (l : list A) i :
  sublist (take i l) l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_app_skip_r. Qed.
Lemma sublist_drop (l : list A) i :
  sublist (drop i l) l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_app_skip_l. Qed.
Lemma sublist_delete (l : list A) i :
  sublist (delete i l) l.
Proof. revert i. by induction l; intros [|?]; simpl; constructor. Qed.
Lemma sublist_delete_list (l : list A) is :
  sublist (delete_list is l) l.
Proof.
  induction is as [|i is IH]; simpl; [done |].
  transitivity (delete_list is l); auto using sublist_delete.
Qed.

Lemma sublist_alt (l1 l2 : list A) :
  sublist l1 l2   is, l1 = delete_list is l2.
Proof.
  split.
  * intros Hl12.
    cut ( k,  is, k ++ l1 = delete_list is (k ++ l2)).
    { intros help. apply (help []). }
    induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
    + by eexists [].
    + destruct (IH (k ++ [x])) as [is His]. exists is.
      by rewrite <-!(associative (++)) in His.
    + destruct (IH k) as [is His]. exists (is ++ [length k]).
      unfold delete_list. rewrite fold_right_app. simpl.
      by rewrite delete_middle.
  * intros [is ?]. subst. apply sublist_delete_list.
Qed.

Global Instance: AntiSymmetric (@sublist A).
Proof.
  intros l1 l2 Hl12 Hl21. apply sublist_length in Hl21.
  induction Hl12; simpl in *.
  * done.
  * f_equal. auto with arith.
  * apply sublist_length in Hl12. lia.
Qed.
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123