fin_maps.v 92.5 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_sets.
9 10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12 13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14 15 16 17 18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24 25 26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
29 30
Hint Mode FinMapToList ! - - : typeclass_instances.
Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

32 33
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
34
    EqDecision K} := {
35 36
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
37 38 39 40
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
41
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
42
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
43 44
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
45
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
46
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
47
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
48 49
}.

50 51 52
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
53 54
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
55 56 57 58 59 60 61 62 63
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

64
Definition list_to_map `{Insert K A M, Empty M} : list (K * A)  M :=
65
  fold_right (λ p, <[p.1:=p.2]>) .
66

67 68
Instance map_size `{FinMapToList K A M} : Size M := λ m, length (map_to_list m).

69
Definition map_to_set `{FinMapToList K A M,
70
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
71 72
  list_to_set (curry f <$> map_to_list m).
Definition set_to_map `{Elements B C, Insert K A M, Empty M}
73
    (f : B  K * A) (X : C) : M :=
74
  list_to_map (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76 77 78 79 80 81
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
82

83 84 85
(** Higher precedence to make sure it's not used for other types with a [Lookup]
instance, such as lists. *)
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 20 :=
86
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
87

88 89
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
90
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
91
  λ m,  i x, m !! i = Some x  P i x.
92
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
95
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
97
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
99
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
100
Hint Extern 0 (_ ## _) => symmetry; eassumption : core.
101 102
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ## m) (only parsing) : stdpp_scope.
103
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
104
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
105 106 107 108 109

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
110
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
111 112 113
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

114 115
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
116
Instance map_difference `{Merge M} {A} : Difference (M A) :=
117
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
118

119 120
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
121 122
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
123
  list_to_map (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).
124

125 126 127 128 129 130 131
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

132 133 134 135 136
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

137
Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
138 139
  λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) .

140 141 142 143 144 145
Fixpoint map_seq `{Insert nat A M, Empty M} (start : nat) (xs : list A) : M :=
  match xs with
  | [] => 
  | x :: xs => <[start:=x]> (map_seq (S start) xs)
  end.

146 147 148 149
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
150 151
(** ** Setoids *)
Section setoid.
152
  Context `{Equiv A}.
153

154 155 156 157
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

158
  Global Instance map_equivalence : Equivalence (@{A})  Equivalence (@{M A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
159 160
  Proof.
    split.
161 162
    - by intros m i.
    - by intros m1 m2 ? i.
163
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
164
  Qed.
165
  Global Instance lookup_proper (i : K) : Proper ((@{M A}) ==> ()) (lookup i).
Robbert Krebbers's avatar
Robbert Krebbers committed
166 167
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
168
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) partial_alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
169 170 171 172 173 174
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
175
    Proper (() ==> () ==> (@{M A})) (insert i).
Robbert Krebbers's avatar
Robbert Krebbers committed
176
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
177
  Global Instance singleton_proper k : Proper (() ==> (@{M A})) (singletonM k).
178 179 180 181
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
182
  Global Instance delete_proper (i : K) : Proper (() ==> (@{M A})) (delete i).
Robbert Krebbers's avatar
Robbert Krebbers committed
183 184
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
185
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
186 187 188 189
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191
  Lemma merge_ext `{Equiv B, Equiv C} (f g : option A  option B  option C)
      `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
192
    (() ==> () ==> ())%signature f g 
193
    (() ==> () ==> (@{M _}))%signature (merge f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
194 195 196 197
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
198
    Proper ((() ==> () ==> ()) ==> () ==> () ==>(@{M A})) union_with.
Robbert Krebbers's avatar
Robbert Krebbers committed
199 200 201
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
202
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
204
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
205 206
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
207 208 209
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
210
  Qed.
211
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
212
    Proper (() ==> ()) f  Proper (() ==> (@{M _})) (fmap f).
213 214 215
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
216 217 218
End setoid.

(** ** General properties *)
219 220 221 222 223
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
225 226
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
227
Global Instance map_included_preorder {A} (R : relation A) :
228
  PreOrder R  PreOrder (map_included R : relation (M A)).
229
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
230
  split; [intros m i; by destruct (m !! i); simpl|].
231
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
232
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
233
    done || etrans; eauto.
234
Qed.
235
Global Instance map_subseteq_po : PartialOrder (@{M A}).
236
Proof.
237 238 239
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
240 241 242
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
243
Proof. rewrite !map_subseteq_spec. auto. Qed.
244 245 246 247 248 249
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
250 251
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
252 253
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
254 255
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
256 257 258 259 260 261
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
262
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
263 264
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
265 266 267
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
268 269
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
270 271 272 273 274
Lemma map_fmap_empty_inv {A B} (f : A  B) m : f <$> m =   m = .
Proof.
  intros Hm. apply map_eq; intros i. generalize (f_equal (lookup i) Hm).
  by rewrite lookup_fmap, !lookup_empty, fmap_None.
Qed.
275

276 277 278 279 280
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
281
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
282 283 284 285 286 287 288 289 290 291
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

292
(** ** Properties of the [partial_alter] operation *)
293 294 295
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
296 297
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
298 299
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
300 301
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
302 303
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
304
Qed.
305
Lemma partial_alter_commute {A} f g (m : M A) i j :
306
  i  j  partial_alter f i (partial_alter g j m) =
307 308
    partial_alter g j (partial_alter f i m).
Proof.
309 310 311 312
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
313
  - by rewrite lookup_partial_alter,
314
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
315
  - by rewrite !lookup_partial_alter_ne by congruence.
316 317 318 319
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
320 321
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
322
Qed.
323
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
324
Proof. by apply partial_alter_self_alt. Qed.
325
Lemma partial_alter_subseteq {A} f (m : M A) i :
326
  m !! i = None  m  partial_alter f i m.
327 328 329 330
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
331
Lemma partial_alter_subset {A} f (m : M A) i :
332
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
333
Proof.
334 335
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
336 337 338
Qed.

(** ** Properties of the [alter] operation *)
339
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
340
Proof. unfold alter. apply lookup_partial_alter. Qed.
341 342
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
343
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
344 345 346
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
347 348 349 350 351 352 353 354 355
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
356
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
357 358 359
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
360
  destruct (decide (i = j)) as [->|?].
361
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
362
  - rewrite lookup_alter_ne by done. naive_solver.
363
Qed.
364
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
365 366
  alter f i m !! j = None  m !! j = None.
Proof.
367 368
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
369
Qed.
370
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
371 372
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
373
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
374
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
375
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
376
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
377
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
378
  by rewrite lookup_alter_ne by done.
379
Qed.
380 381 382 383 384 385 386 387 388 389 390 391
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
392 393 394 395 396 397 398 399 400 401

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
402
  - destruct (decide (i = j)) as [->|?];
403
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
404
  - intros [??]. by rewrite lookup_delete_ne.
405
Qed.
406 407 408
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
409 410 411
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
412 413
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
414 415 416 417 418 419 420 421 422
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
423
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
424
Proof.
425 426
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
427
Qed.
428 429 430
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
431 432 433 434 435 436 437 438 439
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
440 441 442
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
443 444
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
445
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
446 447 448
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
449
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
450
Proof.
451 452
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
453
Qed.
454
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
455
Proof.
456 457
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
458 459 460 461 462
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
463
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
464
Proof. rewrite lookup_insert. congruence. Qed.
465
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
466
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
467 468
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
469 470 471 472 473 474 475
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
476
  - destruct (decide (i = j)) as [->|?];
477
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
478
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
479
Qed.
480 481 482
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
483 484 485
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
486 487 488
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
489 490 491
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
492
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
493
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
494 495 496 497 498 499 500 501
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
502 503
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
504
Qed.
505
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
506 507 508 509 510 511
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.

512
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
513
Proof. apply partial_alter_subseteq. Qed.
514
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
515
Proof. intro. apply partial_alter_subset; eauto. Qed.
516 517 518 519 520
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
521
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
522
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
523
Proof.
524
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
525
Qed.
526

527
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
528
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
529
Proof.
530 531 532 533
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
534 535
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
536
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
537
Proof.
538 539
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
540 541
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
542 543
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
544
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
545
Proof.
546 547 548
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
549 550
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
551
  m1 !! i = None  <[i:=x]> m1  m2 
552 553
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
554
  intros Hi Hm1m2. exists (delete i m2). split_and?.
555 556
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
557 558
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
559 560 561 562
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
563
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
564
Proof.
565
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
566
Qed.
567 568
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
569
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
570
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
571
Proof. by rewrite lookup_singleton_Some. Qed.
572 573
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
574
Proof. by rewrite lookup_singleton_None. Qed.
575
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
576 577 578 579
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
580
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
581
Proof.
582
  unfold singletonM, map_singleton, insert, map_insert.
583 584
  by rewrite <-partial_alter_compose.
Qed.
585 586
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
587
Proof.
588
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
589 590
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
591 592
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
593
  i  j  alter f i ({[j := x]} : M A) = {[j := x]}.
594
Proof.
595 596
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
597
Qed.
598
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  ( : M A).
599
Proof. apply insert_non_empty. Qed.
600
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ( : M A).
601
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
602
Lemma delete_singleton_ne {A} i j (x : A) :
603
  i  j  delete i ({[j := x]} : M A) = {[j := x]}.
604
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
605

606 607 608 609 610
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
611 612 613
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
614 615
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
616
Qed.
617 618 619 620 621 622
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
623 624 625 626
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
627 628
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
629
Qed.
630
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
631 632 633
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
634
Lemma omap_singleton {A B} (f : A  option B) i x y :
635
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
636
Proof.
637 638
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
639
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
640 641 642
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
643
  g  f <$> m = g <$> (f <$> m).
Robbert Krebbers's avatar
Robbert Krebbers committed
644
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
645
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) (m : M A) :
646 647 648 649 650
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
651
Lemma map_fmap_ext {A B} (f1 f2 : A  B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
652 653 654 655 656
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
657
Lemma omap_ext {A B} (f1 f2 : A  option B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
658 659 660 661 662
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
Lemma map_fmap_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using map_fmap_mono.
  exists j. by rewrite !lookup_fmap, fmap_None, fmap_is_Some.
Qed.
Lemma map_omap_mono {A B} (f : A  option B) (m1 m2 : M A) :
  m1  m2  omap f m1  omap f m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_omap, !bind_Some. naive_solver.
Qed.

684
(** ** Properties of conversion to lists *)
685 686 687
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
688
Lemma map_to_list_unique {A} (m : M A) i x y :
689
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
690
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
691
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
692
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
693 694
Lemma elem_of_list_to_map_1' {A} (l : list (K * A)) i x :
  ( y, (i,y)  l  x = y)  (i,x)  l  (list_to_map l : M A) !! i = Some x.
695 696 697
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
698
  intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
699
  destruct (decide (i = j)) as [->|].
700
  - rewrite lookup_insert; f_equal; eauto using eq_sym.
701
  - rewrite lookup_insert_ne by done; eauto.
702
Qed.
703 704
Lemma elem_of_list_to_map_1 {A} (l : list (K * A)) i x :
  NoDup (l.*1)  (i,x)  l  (list_to_map l : M A) !! i = Some x.
705
Proof.
706
  intros ? Hx; apply elem_of_list_to_map_1'; eauto using NoDup_fmap_fst.
707
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
708
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
709
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
710
Qed.
711 712
Lemma elem_of_list_to_map_2 {A} (l : list (K * A)) i x :
  (list_to_map l : M A) !! i = Some x  (i,x)  l.
713
Proof.
714 715 716
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
Robbert Krebbers's avatar