list.v 140 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18 19 20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23 24 25 26 27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28 29 30 31 32 33 34 35 36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37 38 39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45 46 47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
Instance list_alter {A} (f : A  A) : AlterD nat A (list A) f :=
49
  fix go i l {struct l} := let _ : AlterD _ _ _ f := @go in
50 51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: alter f i l end
53
  end.
54

55 56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57 58 59 60 61 62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63

64 65 66
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
67 68
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
69 70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
72
  end.
73 74 75

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
77 78
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
79 80 81 82

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
83
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85
  match l with
  | [] => []
86
  | x :: l => if decide (P x) then x :: filter P l else filter P l
87 88 89 90 91 92 93
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option nat :=
  fix go l :=
  match l with
94
  | [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
95
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
96 97 98 99

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
100
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103 104

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

105 106 107 108
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110 111 112 113 114 115
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
116
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
117 118 119
  end.
Arguments resize {_} !_ _ !_.

120 121 122
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
123 124
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
125
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
126 127
  end.

128
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
129 130 131 132
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
133

134 135 136 137
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
138
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
139 140 141 142 143

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap {A B} (f : A  B) : FMapD list f :=
  fix go (l : list A) :=
144
  match l with [] => [] | x :: l => f x :: @fmap _ _ _ f go l end.
145 146
Instance list_bind {A B} (f : A  list B) : MBindD list f :=
  fix go (l : list A) :=
147
  match l with [] => [] | x :: l => f x ++ @mbind _ _ _ f go l end.
148 149
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
150
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
151
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
152
  fix go l :=
153
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
154 155 156 157 158

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
159
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
160
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
161 162 163 164 165 166 167 168 169 170 171
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
172

173 174 175 176 177 178 179
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
180 181 182 183

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
184
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
185 186
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
187
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
188

189 190
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
191 192
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
193 194
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
195

196 197 198 199 200 201 202 203
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
204
      if decide_rel (=) x1 x2
205
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
206 207 208 209 210
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
211 212
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
213
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
214

215
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
216 217 218
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
219
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
220
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
221 222 223
Infix "`sublist`" := sublist (at level 70) : C_scope.

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
224
from [l1] while possiblity changing the order. *)
225 226 227 228
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
229
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
230 231 232 233 234 235 236 237 238 239 240 241
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
242
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
243 244
    end.
End contains_dec_help.
245

246 247 248 249 250
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
276
      then list_difference l k else x :: list_difference l k
277
    end.
278
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
279 280 281 282 283
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
284
      then x :: list_intersection l k else list_intersection l k
285 286 287 288 289 290 291 292 293
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
294 295

(** * Basic tactics on lists *)
296 297 298
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
299 300
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
301
  repeat (simpl in H || rewrite app_length in H); exfalso; lia.
302
Tactic Notation "discriminate_list_equality" :=
303 304 305
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
306

307 308 309
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
310 311 312 313 314 315 316 317 318
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
319 320 321
Ltac simplify_list_equality :=
  repeat match goal with
  | _ => progress simplify_equality
322
  | H : _ ++ _ = _ ++ _ |- _ => first
323 324 325
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
326
  | H : [?x] !! ?i = Some ?y |- _ =>
327 328 329
    destruct i; [change (Some x = Some y) in H | discriminate]
  end;
  try discriminate_list_equality.
330 331
Ltac simplify_list_equality' :=
  repeat (progress simpl in * || simplify_list_equality).
332

333 334
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
335
Context {A : Type}.
336 337
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
338

339 340 341
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
342
Proof. intros ???. apply app_inv_head. Qed.
343
Global Instance:  k, Injective (=) (=) (++ k).
344
Proof. intros ???. apply app_inv_tail. Qed.
345 346 347 348 349 350
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
351

352
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
353
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
354 355
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
356
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
357 358 359
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
360 361
Proof.
  revert l2. induction l1; intros [|??] H.
362
  * done.
363 364
  * discriminate (H 0).
  * discriminate (H 0).
365
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
366
Qed.
367
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
368
  Decision (l = k) := list_eq_dec dec.
369 370 371 372 373 374 375 376
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
377
Lemma nil_or_length_pos l : l = []  length l  0.
378
Proof. destruct l; simpl; auto with lia. Qed.
379
Lemma nil_length_inv l : length l = 0  l = [].
380 381
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
382
Proof. by destruct i. Qed.
383
Lemma lookup_tail l i : tail l !! i = l !! S i.
384
Proof. by destruct l. Qed.
385 386
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
387
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
388 389 390 391 392
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
393
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
394 395 396 397 398 399 400 401 402 403
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_length l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
404
  length l2 = length l1 
405
  ( i x y, l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
406
Proof.
407 408 409
  intros Hl ?; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y ?]; [|naive_solver].
    rewrite <-Hl. eauto using lookup_lt_Some.
410
  * by rewrite lookup_ge_None, <-Hl, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
Qed.
412
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
413
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
414 415
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
416
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
417 418 419 420
Proof. revert i. induction l1; intros [|i]; simplify_equality'; auto. Qed.
Lemma lookup_app_r_alt l1 l2 i j :
  j = length l1  (l1 ++ l2) !! (j + i) = l2 !! i.
Proof. intros ->. by apply lookup_app_r. Qed.
421 422
Lemma lookup_app_r_Some l1 l2 i x :
  l2 !! i = Some x  (l1 ++ l2) !! (length l1 + i) = Some x.
423
Proof. by rewrite lookup_app_r. Qed.
424 425 426
Lemma lookup_app_minus_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. intros. rewrite <-(lookup_app_r l1 l2). f_equal. lia. Qed.
427 428
Lemma lookup_app_inv l1 l2 i x :
  (l1 ++ l2) !! i = Some x  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
429
Proof. revert i. induction l1; intros [|i] ?; simplify_equality'; auto. Qed.
430 431 432
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
433

434
Lemma alter_length f l i : length (alter f i l) = length l.
435
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
436
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
437
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
438
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
439
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
440
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
441
Proof.
442
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
443
Qed.
444
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
445 446
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
447
Proof.
448
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
449
Qed.
450 451
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
Proof.
453
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
454 455 456
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
457 458
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
459
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
460
Lemma alter_app_r f l1 l2 i :
461
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
462
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
463 464
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
465 466 467 468
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
469 470 471
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
472 473
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
474
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
475 476
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
477
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
478 479
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
480
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
481
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
482
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
483 484
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
485 486 487 488
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
489
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
490
Proof. induction l1; f_equal'; auto. Qed.
491

492
(** ** Properties of the [elem_of] predicate *)
493
Lemma not_elem_of_nil x : x  [].
494
Proof. by inversion 1. Qed.
495
Lemma elem_of_nil x : x  []  False.
496
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
497
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
498
Proof. destruct l. done. by edestruct 1; constructor. Qed.
499 500
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
501
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
502
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
503
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
504
Proof. rewrite elem_of_cons. tauto. Qed.
505
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
506
Proof.
507
  induction l1.
508
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
509
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
510
Qed.
511
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
Proof. rewrite elem_of_app. tauto. Qed.
513
Lemma elem_of_list_singleton x y : x  [y]  x = y.
514
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
515
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
516
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
517
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
518
Proof.
519 520
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
521
Qed.
522
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
523
Proof.
524 525
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
526
Qed.
527
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
528
Proof.
529
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
530
Qed.
531 532 533
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.

534
(** ** Properties of the [NoDup] predicate *)
535 536
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
537
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
538
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
539
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
540
Proof. rewrite NoDup_cons. by intros [??]. Qed.
541
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
542
Proof. rewrite NoDup_cons. by intros [??]. Qed.
543
Lemma NoDup_singleton x : NoDup [x].
544
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
545
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
546
Proof.
547
  induction l; simpl.
548
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
549
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
550
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
551
Qed.
552
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
553 554 555 556 557 558 559
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
560 561
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
562 563 564 565 566 567
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
568 569
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
570
Proof.
571 572 573 574 575
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
576
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
577

578 579 580 581 582 583
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
584
    | x :: l =>
585 586 587 588 589 590 591 592
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
593
    end.
594
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
595 596 597 598
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
599
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
600 601 602 603
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
604
End no_dup_dec.
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

669
(** ** Properties of the [filter] function *)
670 671 672 673 674 675 676
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
677
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
678 679 680 681 682
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
683

684 685 686
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
687 688
  Lemma list_find_Some l i :
    list_find P l = Some i   x, l !! i = Some x  P x.
689
  Proof.
690
    revert i. induction l; intros [] ?; simplify_option_equality; eauto.
691 692 693
  Qed.
  Lemma list_find_elem_of l x : x  l  P x   i, list_find P l = Some i.
  Proof.
694 695
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [i ->]; [|exists (S i)].
696 697 698 699 700 701 702
  Qed.
End find.

Section find_eq.
  Context `{ x y, Decision (x = y)}.
  Lemma list_find_eq_Some l i x : list_find (x =) l = Some i  l !! i = Some x.
  Proof.
703 704
    intros.
    destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
705 706 707 708 709
  Qed.
  Lemma list_find_eq_elem_of l x : x  l   i, list_find (x=) l = Some i.
  Proof. eauto using list_find_elem_of. Qed.
End find_eq.

710
(** ** Properties of the [reverse] function *)
711 712
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
713
Lemma reverse_singleton x : reverse [x] = [x].
714
Proof. done. Qed.
715
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
716
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
717
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
718
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
719
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
720
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
721
Lemma reverse_length l : length (reverse l) = length l.
722
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
723
Lemma reverse_involutive l : reverse (reverse l) = l.
724
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Injective (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
740

741 742 743
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
744 745 746 747
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
748

749 750 751 752 753 754 755
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_equality'; f_equal; auto.
Qed.
756
Lemma take_nil n : take n (@nil A) = [].
Robbert Krebbers's avatar
Robbert Krebbers committed
757
Proof. by destruct n. Qed.
758
Lemma take_app l k : take (length l) (l ++ k) = l.
759
Proof. induction l; f_equal'; auto. Qed.
760
Lemma take_app_alt l k n : n = length l  take n (l ++ k) = l.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
Proof. intros Hn. by rewrite Hn, take_app. Qed.
762
Lemma take_app_le l k n : n  length l  take n (l ++ k) = take n l.
763
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
764 765 766
Lemma take_plus_app l k n m :
  length l = n  take (n + m) (l ++ k) = l ++ take m k.
Proof. intros <-. induction l; f_equal'; auto. Qed.
767 768
Lemma take_app_ge l k n :
  length l  n  take n (l ++ k) = l ++ take (n - length l) k.
769
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
770
Lemma take_ge l n : length l  n  take n l = l.
771
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
772
Lemma take_take l n m : take n (take m l) = take (min n m) l.
773
Proof. revert n m. induction l; intros [|?] [|?]; f_equal'; auto. Qed.
774
Lemma take_idempotent l n : take n (take n l) = take n l.
Robbert Krebbers's avatar
Robbert Krebbers committed
775
Proof. by rewrite take_take, Min.min_idempotent. Qed.
776
Lemma take_length l n : length (take n l) = min n (length l).
777
Proof. revert n. induction l; intros [|?]; f_equal'; done. Qed.
778
Lemma take_length_le l n : n  length l  length (take n l) = n.
Robbert Krebbers's avatar
Robbert Krebbers committed
779
Proof. rewrite take_length. apply Min.min_l. Qed.
780 781
Lemma take_length_ge l n<