list.v 140 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14
15
16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18
19
20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
23
24
25
26
27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28
29
30
31
32
33
34
35
36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37
38
39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45
46
47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
Instance list_alter {A} (f : A  A) : AlterD nat A (list A) f :=
49
  fix go i l {struct l} := let _ : AlterD _ _ _ f := @go in
50
51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: alter f i l end
53
  end.
54

55
56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57
58
59
60
61
62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63

64
65
66
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
67
68
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
69
70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
72
  end.
73
74
75

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
77
78
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
80
81
82

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
83
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
  match l with
  | [] => []
86
  | x :: l => if decide (P x) then x :: filter P l else filter P l
87
88
89
90
91
92
93
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option nat :=
  fix go l :=
  match l with
94
  | [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
95
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
97
98
99

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
100
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
103
104

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

105
106
107
108
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
112
113
114
115
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
116
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
119
  end.
Arguments resize {_} !_ _ !_.

120
121
122
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
123
124
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
125
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
126
127
  end.

128
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
129
130
131
132
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
133

134
135
136
137
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
138
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
139
140
141
142
143

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap {A B} (f : A  B) : FMapD list f :=
  fix go (l : list A) :=
144
  match l with [] => [] | x :: l => f x :: @fmap _ _ _ f go l end.
145
146
Instance list_bind {A B} (f : A  list B) : MBindD list f :=
  fix go (l : list A) :=
147
  match l with [] => [] | x :: l => f x ++ @mbind _ _ _ f go l end.
148
149
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
150
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
151
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
152
  fix go l :=
153
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
154
155
156
157
158

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
159
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
160
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
161
162
163
164
165
166
167
168
169
170
171
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
172

173
174
175
176
177
178
179
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
180
181
182
183

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
184
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
185
186
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
187
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
188

189
190
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
191
192
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
193
194
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
195

196
197
198
199
200
201
202
203
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
204
      if decide_rel (=) x1 x2
205
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
206
207
208
209
210
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
211
212
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
213
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
214

215
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
216
217
218
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
219
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
220
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
221
222
223
Infix "`sublist`" := sublist (at level 70) : C_scope.

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
224
from [l1] while possiblity changing the order. *)
225
226
227
228
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
229
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
230
231
232
233
234
235
236
237
238
239
240
241
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
242
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
243
244
    end.
End contains_dec_help.
245

246
247
248
249
250
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
276
      then list_difference l k else x :: list_difference l k
277
    end.
278
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
279
280
281
282
283
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
284
      then x :: list_intersection l k else list_intersection l k
285
286
287
288
289
290
291
292
293
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
294
295

(** * Basic tactics on lists *)
296
297
298
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
299
300
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
301
  repeat (simpl in H || rewrite app_length in H); exfalso; lia.
302
Tactic Notation "discriminate_list_equality" :=
303
304
305
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
306

307
308
309
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
310
311
312
313
314
315
316
317
318
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
319
320
321
Ltac simplify_list_equality :=
  repeat match goal with
  | _ => progress simplify_equality
322
  | H : _ ++ _ = _ ++ _ |- _ => first
323
324
325
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
326
  | H : [?x] !! ?i = Some ?y |- _ =>
327
328
329
    destruct i; [change (Some x = Some y) in H | discriminate]
  end;
  try discriminate_list_equality.
330
331
Ltac simplify_list_equality' :=
  repeat (progress simpl in * || simplify_list_equality).
332

333
334
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
335
Context {A : Type}.
336
337
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
338

339
340
341
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
342
Proof. intros ???. apply app_inv_head. Qed.
343
Global Instance:  k, Injective (=) (=) (++ k).
344
Proof. intros ???. apply app_inv_tail. Qed.
345
346
347
348
349
350
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
351

352
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
353
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
354
355
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
356
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
357
358
359
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
360
361
Proof.
  revert l2. induction l1; intros [|??] H.
362
  * done.
363
364
  * discriminate (H 0).
  * discriminate (H 0).
365
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
366
Qed.
367
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
368
  Decision (l = k) := list_eq_dec dec.
369
370
371
372
373
374
375
376
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
377
Lemma nil_or_length_pos l : l = []  length l  0.
378
Proof. destruct l; simpl; auto with lia. Qed.
379
Lemma nil_length_inv l : length l = 0  l = [].
380
381
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
382
Proof. by destruct i. Qed.
383
Lemma lookup_tail l i : tail l !! i = l !! S i.
384
Proof. by destruct l. Qed.
385
386
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
387
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
388
389
390
391
392
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
393
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
394
395
396
397
398
399
400
401
402
403
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_length l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
404
  length l2 = length l1 
405
  ( i x y, l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
406
Proof.
407
408
409
  intros Hl ?; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y ?]; [|naive_solver].
    rewrite <-Hl. eauto using lookup_lt_Some.
410
  * by rewrite lookup_ge_None, <-Hl, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
Qed.
412
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
413
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
414
415
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
416
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
417
418
419
420
Proof. revert i. induction l1; intros [|i]; simplify_equality'; auto. Qed.
Lemma lookup_app_r_alt l1 l2 i j :
  j = length l1  (l1 ++ l2) !! (j + i) = l2 !! i.
Proof. intros ->. by apply lookup_app_r. Qed.
421
422
Lemma lookup_app_r_Some l1 l2 i x :
  l2 !! i = Some x  (l1 ++ l2) !! (length l1 + i) = Some x.
423
Proof. by rewrite lookup_app_r. Qed.
424
425
426
Lemma lookup_app_minus_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. intros. rewrite <-(lookup_app_r l1 l2). f_equal. lia. Qed.
427
428
Lemma lookup_app_inv l1 l2 i x :
  (l1 ++ l2) !! i = Some x  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
429
Proof. revert i. induction l1; intros [|i] ?; simplify_equality'; auto. Qed.
430
431
432
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
433

434
Lemma alter_length f l i : length (alter f i l) = length l.
435
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
436
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
437
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
438
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
439
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
440
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
441
Proof.
442
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
443
Qed.
444
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
445
446
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
447
Proof.
448
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
449
Qed.
450
451
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
Proof.
453
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
454
455
456
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
457
458
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
459
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
460
Lemma alter_app_r f l1 l2 i :
461
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
462
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
463
464
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
465
466
467
468
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
469
470
471
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
472
473
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
474
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
475
476
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
477
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
478
479
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
480
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
481
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
482
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
483
484
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
485
486
487
488
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
489
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
490
Proof. induction l1; f_equal'; auto. Qed.
491

492
(** ** Properties of the [elem_of] predicate *)
493
Lemma not_elem_of_nil x : x  [].
494
Proof. by inversion 1. Qed.
495
Lemma elem_of_nil x : x  []  False.
496
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
497
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
498
Proof. destruct l. done. by edestruct 1; constructor. Qed.
499
500
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
501
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
502
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
503
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
504
Proof. rewrite elem_of_cons. tauto. Qed.
505
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
506
Proof.
507
  induction l1.
508
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
509
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
510
Qed.
511
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
Proof. rewrite elem_of_app. tauto. Qed.
513
Lemma elem_of_list_singleton x y : x  [y]  x = y.
514
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
515
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
516
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
517
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
518
Proof.
519
520
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
521
Qed.
522
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
523
Proof.
524
525
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
526
Qed.
527
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
528
Proof.
529
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
530
Qed.
531
532
533
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.

534
(** ** Properties of the [NoDup] predicate *)
535
536
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
537
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
538
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
539
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
540
Proof. rewrite NoDup_cons. by intros [??]. Qed.
541
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
542
Proof. rewrite NoDup_cons. by intros [??]. Qed.
543
Lemma NoDup_singleton x : NoDup [x].
544
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
545
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
546
Proof.
547
  induction l; simpl.
548
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
549
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
550
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
551
Qed.
552
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
553
554
555
556
557
558
559
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
560
561
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
562
563
564
565
566
567
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
568
569
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
570
Proof.
571
572
573
574
575
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
576
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
577

578
579
580
581
582
583
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
584
    | x :: l =>
585
586
587
588
589
590
591
592
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
593
    end.
594
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
595
596
597
598
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
599
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
600
601
602
603
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
604
End no_dup_dec.
605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

669
(** ** Properties of the [filter] function *)
670
671
672
673
674
675
676
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
677
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
678
679
680
681
682
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
683

684
685
686
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
687
688
  Lemma list_find_Some l i :
    list_find P l = Some i   x, l !! i = Some x  P x.
689
  Proof.
690
    revert i. induction l; intros [] ?; simplify_option_equality; eauto.
691
692
693
  Qed.
  Lemma list_find_elem_of l x : x  l  P x   i, list_find P l = Some i.
  Proof.
694
695
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [i ->]; [|exists (S i)].
696
697
698
699
700
701
702
  Qed.
End find.

Section find_eq.
  Context `{ x y, Decision (x = y)}.
  Lemma list_find_eq_Some l i x : list_find (x =) l = Some i  l !! i = Some x.
  Proof.
703
704
    intros.
    destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
705
706
707
708
709
  Qed.
  Lemma list_find_eq_elem_of l x : x  l   i, list_find (x=) l = Some i.
  Proof. eauto using list_find_elem_of. Qed.
End find_eq.

710
(** ** Properties of the [reverse] function *)
711
712
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
713
Lemma reverse_singleton x : reverse [x] = [x].
714
Proof. done. Qed.
715
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
716
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
717
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
718
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
719
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
720
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
721
Lemma reverse_length l : length (reverse l) = length l.
722
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
723
Lemma reverse_involutive l : reverse (reverse l) = l.
724
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Injective (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
740

741
742
743
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
744
745
746
747
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
748

749
750
751
752
753
754
755
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_equality'; f_equal; auto.
Qed.
756
Lemma take_nil n : take n (@nil A) = [].
Robbert Krebbers's avatar
Robbert Krebbers committed
757
Proof. by destruct n. Qed.
758
Lemma take_app l k : take (length l) (l ++ k) = l.
759
Proof. induction l; f_equal'; auto. Qed.
760
Lemma take_app_alt l k n : n = length l  take n (l ++ k) = l.
Robbert Krebbers's avatar
Robbert Krebbers committed
761
Proof. intros Hn. by rewrite Hn, take_app. Qed.
762
Lemma take_app_le l k n : n  length l  take n (l ++ k) = take n l.