fin_maps.v 59.9 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5 6
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Require Import Permutation.
8 9
Require Export ars vector orders.

10 11
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
12 13 14 15 16
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
17

Robbert Krebbers's avatar
Robbert Krebbers committed
18 19
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
20
prove well founded recursion on finite maps. *)
21

22 23 24
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
25

26
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28 29 30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
     i j : K, Decision (i = j)} := {
31 32
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
33 34 35 36
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
37
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
38
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
39 40
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
41
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
42 43 44
  lookup_merge {A B C} (f : option A  option B  option C)
      `{!PropHolds (f None None = None)} m1 m2 i :
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46
}.

47 48 49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50 51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52 53 54 55 56
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
57
  partial_alter (λ _, None).
58 59
Instance map_singleton `{PartialAlter K A M, Empty M} :
  Singleton (K * A) M := λ p, <[p.1:=p.2]> .
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61 62
Definition map_of_list `{Insert K A M} `{Empty M} : list (K * A)  M :=
  fold_right (λ p, <[p.1:=p.2]>) .
Robbert Krebbers's avatar
Robbert Krebbers committed
63

64 65 66 67 68 69
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
70

71 72
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
73
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
74
  λ m,  i x, m !! i = Some x  P i x.
75 76 77 78 79 80 81 82 83
Definition map_Forall2 `{ A, Lookup K A (M A)} {A B}
    (R : A  B  Prop) (P : A  Prop) (Q : B  Prop)
    (m1 : M A) (m2 : M B) : Prop :=  i,
  match m1 !! i, m2 !! i with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.
84

85 86 87 88
Instance map_disjoint `{ A, Lookup K A (M A)} {A} : Disjoint (M A) :=
  map_Forall2 (λ _ _, False) (λ _, True) (λ _, True).
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
  map_Forall2 (=) (λ _, False) (λ _, True).
Robbert Krebbers's avatar
Robbert Krebbers committed
89 90 91 92 93

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
94
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
95 96 97
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

98 99
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
100
Instance map_difference `{Merge M} {A} : Difference (M A) :=
101
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
102

103 104 105 106
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

107 108 109 110 111 112 113 114
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
  unfold subseteq, map_subseteq, map_Forall2. split; intros Hm i;
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
115
Global Instance: BoundedPreOrder (M A).
116 117 118 119 120 121
Proof.
  repeat split.
  * intros m. by rewrite map_subseteq_spec.
  * intros m1 m2 m3. rewrite !map_subseteq_spec. naive_solver.
  * intros m. rewrite !map_subseteq_spec. intros i x. by rewrite lookup_empty.
Qed.
122
Global Instance : PartialOrder (@subseteq (M A) _).
123
Proof.
124 125
  split; [apply _ |]. intros ??. rewrite !map_subseteq_spec.
  intros ??. apply map_eq; intros i. apply option_eq. naive_solver.
126 127 128
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
129
Proof. rewrite !map_subseteq_spec. auto. Qed.
130 131 132 133 134 135
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
136 137
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
138 139
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
140 141
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
142 143 144 145 146 147 148 149 150
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
151 152 153
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
154 155

(** ** Properties of the [partial_alter] operation *)
156 157 158
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
159 160
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
161 162
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
163 164
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
165 166
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
167
Qed.
168
Lemma partial_alter_commute {A} f g (m : M A) i j :
169
  i  j  partial_alter f i (partial_alter g j m) =
170 171
    partial_alter g j (partial_alter f i m).
Proof.
172 173 174 175 176 177 178
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
  * by rewrite lookup_partial_alter,
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
  * by rewrite !lookup_partial_alter_ne by congruence.
179 180 181 182
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
183 184
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
185
Qed.
186
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
187
Proof. by apply partial_alter_self_alt. Qed.
188
Lemma partial_alter_subseteq {A} f (m : M A) i :
189
  m !! i = None  m  partial_alter f i m.
190 191 192 193
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
194
Lemma partial_alter_subset {A} f (m : M A) i :
195
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
196
Proof.
197 198 199 200
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
201 202 203
Qed.

(** ** Properties of the [alter] operation *)
204 205
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
206
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal'; auto. Qed.
207
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
208
Proof. apply lookup_partial_alter. Qed.
209
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
210
Proof. apply lookup_partial_alter_ne. Qed.
211 212 213 214 215 216 217 218 219
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
220 221 222 223
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
224
  destruct (decide (i = j)) as [->|?].
225 226 227 228 229 230
  * rewrite lookup_alter. naive_solver (simplify_option_equality; eauto).
  * rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
231 232
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
233
Qed.
234
Lemma alter_None {A} (f : A  A) m i : m !! i = None  alter f i m = m.
235
Proof.
236 237
  intros Hi. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?Hi, ?lookup_alter_ne.
238 239 240 241 242 243 244 245 246 247 248
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
249
  * destruct (decide (i = j)) as [->|?];
250 251 252 253 254 255
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
  * intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
256 257
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
258 259 260
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
261
Lemma delete_singleton {A} i (x : A) : delete i {[i, x]} = .
262 263 264 265 266 267 268
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
269
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
270
Proof.
271 272
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma insert_delete {A} (m : M A) i x :
  m !! i = Some x  <[i:=x]>(delete i m) = m.
Proof.
  intros Hmi. unfold delete, map_delete, insert, map_insert.
  rewrite <-partial_alter_compose. unfold compose. rewrite <-Hmi.
  by apply partial_alter_self_alt.
Qed.
290
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
291 292 293
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
294
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
295
  m1  m2  delete i m1  delete i m2.
296 297 298 299
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
300
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
301
Proof.
302 303 304
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
305
Qed.
306
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
307 308 309 310 311
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
312
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
313
Proof. rewrite lookup_insert. congruence. Qed.
314
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
315 316 317 318 319 320 321 322
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
323
  * destruct (decide (i = j)) as [->|?];
324
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
325
  * intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
326 327 328 329
Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
330 331 332
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
333
Qed.
334
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
335
Proof. apply partial_alter_subseteq. Qed.
336
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
337 338
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
339
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
340
Proof.
341 342 343
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
344 345
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
346
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
347
Proof.
348 349 350 351
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
352 353
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
354
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
355
Proof.
356 357
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
358
  * rewrite lookup_insert. congruence.
359
  * rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
360 361
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
362
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
363
Proof.
364 365 366
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
367 368
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
369
  m1 !! i = None  <[i:=x]> m1  m2 
370 371 372
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
  intros Hi Hm1m2. exists (delete i m2). split_ands.
373
  * rewrite insert_delete. done. eapply lookup_weaken, strict_include; eauto.
374 375 376 377 378 379 380
    by rewrite lookup_insert.
  * eauto using insert_delete_subset.
  * by rewrite lookup_delete.
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
381
  {[i, x]} !! j = Some y  i = j  x = y.
382 383
Proof.
  unfold singleton, map_singleton.
384
  rewrite lookup_insert_Some, lookup_empty. simpl. intuition congruence.
385
Qed.
386
Lemma lookup_singleton_None {A} i j (x : A) : {[i, x]} !! j = None  i  j.
387 388 389 390
Proof.
  unfold singleton, map_singleton.
  rewrite lookup_insert_None, lookup_empty. simpl. tauto.
Qed.
391
Lemma lookup_singleton {A} i (x : A) : {[i, x]} !! i = Some x.
392
Proof. by rewrite lookup_singleton_Some. Qed.
393
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i, x]} !! j = None.
394
Proof. by rewrite lookup_singleton_None. Qed.
395
Lemma map_non_empty_singleton {A} i (x : A) : {[i,x]}  .
396 397 398 399
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
400
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i, x]} = {[i, y]}.
401 402 403 404
Proof.
  unfold singleton, map_singleton, insert, map_insert.
  by rewrite <-partial_alter_compose.
Qed.
405
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i,x]} = {[i, f x]}.
406
Proof.
407
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
408 409 410 411
  * by rewrite lookup_alter, !lookup_singleton.
  * by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
412
  i  j  alter f i {[j,x]} = {[j,x]}.
413
Proof.
414 415
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
416 417
Qed.

418 419 420 421 422 423
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.

424 425
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
426
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
427
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
428 429
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup (fst <$> map_to_list m).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
430
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
431
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
432
Proof.
433
  induction l as [|[j y] l IH]; simpl; [by rewrite elem_of_nil|].
434
  rewrite NoDup_cons, elem_of_cons, elem_of_list_fmap.
435 436 437
  intros [Hl ?] [?|?]; simplify_equality; [by rewrite lookup_insert|].
  destruct (decide (i = j)) as [->|]; [|rewrite lookup_insert_ne; auto].
  destruct Hl. by exists (j,x).
438 439
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
440
  map_of_list l !! i = Some x  (i,x)  l.
441
Proof.
442 443 444
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
445 446
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
447 448
  NoDup (fst <$> l)  (i,x)  l  map_of_list l !! i = Some x.
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
449
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
450
  i  fst <$> l  map_of_list l !! i = None.
451
Proof.
452 453
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
454 455
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
456
  map_of_list l !! i = None  i  fst <$> l.
457
Proof.
458
  induction l as [|[j y] l IH]; simpl; [rewrite elem_of_nil; tauto|].
459 460 461 462 463 464
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_equality.
  * by rewrite lookup_insert.
  * by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
  i  fst <$> l  map_of_list l !! i = None.
465
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
466
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
467
  NoDup (fst <$> l1)  l1  l2  map_of_list l1 = map_of_list l2.
468 469 470 471 472
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
473 474
  NoDup (fst <$> l1)  NoDup (fst <$> l2) 
  map_of_list l1 = map_of_list l2  l1  l2.
475
Proof.
476
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
477 478
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
479
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
480 481 482
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
483
    by auto using NoDup_fst_map_to_list.
484 485
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
486
  NoDup (fst <$> l)  map_to_list (map_of_list l)  l.
487
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
488
Lemma map_to_list_inj {A} (m1 m2 : M A) :
489
  map_to_list m1  map_to_list m2  m1 = m2.
490
Proof.
491
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
492
  auto using map_of_list_proper, NoDup_fst_map_to_list.
493
Qed.
494
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
495 496 497 498 499
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
500
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
501 502
Proof.
  intros. apply map_of_list_inj; simpl.
503 504
  * apply NoDup_fst_map_to_list.
  * constructor; auto using NoDup_fst_map_to_list.
505
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
506 507 508
    rewrite elem_of_map_to_list in Hlookup. congruence.
  * by rewrite !map_of_to_list.
Qed.
509
Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
510 511 512 513
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
514
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
515
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
516
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
517 518
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
519
  map_to_list m  (i,x) :: l  m = <[i:=x]>(map_of_list l).
520 521 522
Proof.
  intros Hperm. apply map_to_list_inj.
  assert (NoDup (fst <$> (i, x) :: l)) as Hnodup.
523
  { rewrite <-Hperm. auto using NoDup_fst_map_to_list. }
524 525 526 527
  simpl in Hnodup. rewrite NoDup_cons in Hnodup. destruct Hnodup.
  rewrite Hperm, map_to_list_insert, map_to_of_list;
    auto using not_elem_of_map_of_list_1.
Qed.
528 529 530 531 532 533
Lemma map_choose {A} (m : M A) : m     i x, m !! i = Some x.
Proof.
  intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm.
  { destruct Hemp; eauto using map_to_list_empty_inv. }
  exists i x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
534 535 536

(** * Induction principles *)
Lemma map_ind {A} (P : M A  Prop) :
537
  P   ( i x m, m !! i = None  P m  P (<[i:=x]>m))   m, P m.
538
Proof.
539
  intros ? Hins. cut ( l, NoDup (fst <$> l)   m, map_to_list m  l  P m).
540
  { intros help m.
541
    apply (help (map_to_list m)); auto using NoDup_fst_map_to_list. }
542 543 544
  induction l as [|[i x] l IH]; intros Hnodup m Hml.
  { apply map_to_list_empty_inv_alt in Hml. by subst. }
  inversion_clear Hnodup.
545
  apply map_to_list_insert_inv in Hml; subst m. apply Hins.
546 547 548 549
  * by apply not_elem_of_map_of_list_1.
  * apply IH; auto using map_to_of_list.
Qed.
Lemma map_to_list_length {A} (m1 m2 : M A) :
550
  m1  m2  length (map_to_list m1) < length (map_to_list m2).
551 552 553 554
Proof.
  revert m2. induction m1 as [|i x m ? IH] using map_ind.
  { intros m2 Hm2. rewrite map_to_list_empty. simpl.
    apply neq_0_lt. intros Hlen. symmetry in Hlen.
555
    apply nil_length_inv, map_to_list_empty_inv in Hlen.
556 557 558 559 560
    rewrite Hlen in Hm2. destruct (irreflexivity ()  Hm2). }
  intros m2 Hm2.
  destruct (insert_subset_inv m m2 i x) as (m2'&?&?&?); auto; subst.
  rewrite !map_to_list_insert; simpl; auto with arith.
Qed.
561
Lemma map_wf {A} : wf (strict (@subseteq (M A) _)).
562 563 564 565 566 567 568
Proof.
  apply (wf_projected (<) (length  map_to_list)).
  * by apply map_to_list_length.
  * by apply lt_wf.
Qed.

(** ** Properties of the [map_forall] predicate *)
569
Section map_Forall.
570 571
Context {A} (P : K  A  Prop).

572
Lemma map_Forall_to_list m : map_Forall P m  Forall (curry P) (map_to_list m).
573 574
Proof.
  rewrite Forall_forall. split.
575 576
  * intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
  * intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
577 578 579
Qed.

Context `{ i x, Decision (P i x)}.
580
Global Instance map_Forall_dec m : Decision (map_Forall P m).
581 582
Proof.
  refine (cast_if (decide (Forall (curry P) (map_to_list m))));
583
    by rewrite map_Forall_to_list.
584
Defined.
585 586
Lemma map_not_Forall (m : M A) :
  ¬map_Forall P m   i x, m !! i = Some x  ¬P i x.
587 588
Proof.
  split.
589
  * rewrite map_Forall_to_list. intros Hm.
590 591 592 593
    apply (not_Forall_Exists _), Exists_exists in Hm.
    destruct Hm as ([i x]&?&?). exists i x. by rewrite <-elem_of_map_to_list.
  * intros (i&x&?&?) Hm. specialize (Hm i x). tauto.
Qed.
594
End map_Forall.
595 596 597 598 599 600

(** ** Properties of the [merge] operation *)
Lemma merge_Some {A B C} (f : option A  option B  option C)
    `{!PropHolds (f None None = None)} m1 m2 m :
  ( i, m !! i = f (m1 !! i) (m2 !! i))  merge f m1 m2 = m.
Proof.
601 602
  split; [|intros <-; apply (lookup_merge _) ].
  intros Hlookup. apply map_eq; intros. rewrite Hlookup. apply (lookup_merge _).
603 604 605 606 607 608 609 610
Qed.

Section merge.
Context {A} (f : option A  option A  option A).

Global Instance: LeftId (=) None f  LeftId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
611
  by rewrite !(lookup_merge f), lookup_empty, (left_id_L None f).
612 613 614 615
Qed.
Global Instance: RightId (=) None f  RightId (=)  (merge f).
Proof.
  intros ??. apply map_eq. intros.
616
  by rewrite !(lookup_merge f), lookup_empty, (right_id_L None f).
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
Qed.

Context `{!PropHolds (f None None = None)}.

Lemma merge_commutative m1 m2 :
  ( i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) 
  merge f m1 m2 = merge f m2 m1.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Commutative (=) f  Commutative (=) (merge f).
Proof.
  intros ???. apply merge_commutative. intros. by apply (commutative f).
Qed.
Lemma merge_associative m1 m2 m3 :
  ( i, f (m1 !! i) (f (m2 !! i) (m3 !! i)) =
        f (f (m1 !! i) (m2 !! i)) (m3 !! i)) 
  merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Associative (=) f  Associative (=) (merge f).
Proof.
636
  intros ????. apply merge_associative. intros. by apply (associative_L f).
637 638
Qed.
Lemma merge_idempotent m1 :
639
  ( i, f (m1 !! i) (m1 !! i) = m1 !! i)  merge f m1 m1 = m1.
640 641
Proof. intros. apply map_eq. intros. by rewrite !(lookup_merge f). Qed.
Global Instance: Idempotent (=) f  Idempotent (=) (merge f).
642
Proof. intros ??. apply merge_idempotent. intros. by apply (idempotent f). Qed.
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

Lemma partial_alter_merge (g g1 g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) =
    merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_l (g g1 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (g1 (m1 !! i)) (m2 !! i) 
  partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.
Lemma partial_alter_merge_r (g g2 : option A  option A) m1 m2 i :
  g (f (m1 !! i) (m2 !! i)) = f (m1 !! i) (g2 (m2 !! i)) 
  partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
  intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
  * by rewrite (lookup_merge _), !lookup_partial_alter, !(lookup_merge _).
  * by rewrite (lookup_merge _), !lookup_partial_alter_ne, (lookup_merge _).
Qed.

Lemma insert_merge_l m1 m2 i x :
  f (Some x) (m2 !! i) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f (<[i:=x]>m1) m2.
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_l.
Qed.
Lemma insert_merge_r m1 m2 i x :
  f (m1 !! i) (Some x) = Some x 
  <[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=x]>m2).
Proof.
  intros. unfold insert, map_insert, alter, map_alter.
  by apply partial_alter_merge_r.
Qed.
End merge.

686 687 688 689 690 691 692 693 694 695 696 697 698 699
(** ** Properties on the [map_Forall2] relation *)
Section Forall2.
Context {A B} (R : A  B  Prop) (P : A  Prop) (Q : B  Prop).
Context `{ x y, Decision (R x y),  x, Decision (P x),  y, Decision (Q y)}.

Let f (mx : option A) (my : option B) : option bool :=
  match mx, my with
  | Some x, Some y => Some (bool_decide (R x y))
  | Some x, None => Some (bool_decide (P x))
  | None, Some y => Some (bool_decide (Q y))
  | None, None => None
  end.
Lemma map_Forall2_alt (m1 : M A) (m2 : M B) :
  map_Forall2 R P Q m1 m2  map_Forall (λ _ P, Is_true P) (merge f m1 m2).
700 701
Proof.
  split.
702 703 704 705 706 707 708 709 710 711 712 713 714
  * intros Hm i P'; rewrite lookup_merge by done; intros.
    specialize (Hm i). destruct (m1 !! i), (m2 !! i);
      simplify_equality; auto using bool_decide_pack.
  * intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); simplify_equality'; auto;
      by eapply bool_decide_unpack, Hm.
Qed.
Global Instance map_Forall2_dec `{ x y, Decision (R x y),  x, Decision (P x),
   y, Decision (Q y)} m1 m2 : Decision (map_Forall2 R P Q m1 m2).
Proof.
  refine (cast_if (decide (map_Forall (λ _ P, Is_true P) (merge f m1 m2))));
    abstract by rewrite map_Forall2_alt.
Defined.
715 716
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
717 718 719 720 721
Lemma map_not_Forall2 (m1 : M A) (m2 : M B) :
  ¬map_Forall2 R P Q m1 m2   i,
    ( x y, m1 !! i = Some x  m2 !! i = Some y  ¬R x y)
     ( x, m1 !! i = Some x  m2 !! i = None  ¬P x)
     ( y, m1 !! i = None  m2 !! i = Some y  ¬Q y).
722 723
Proof.
  split.
724 725 726 727 728
  * rewrite map_Forall2_alt, (map_not_Forall _). intros (i&?&Hm&?); exists i.
    rewrite lookup_merge in Hm by done.
    destruct (m1 !! i), (m2 !! i); naive_solver auto 2 using bool_decide_pack.
  * by intros [i[(x&y&?&?&?)|[(x&?&?&?)|(y&?&?&?)]]] Hm;
      specialize (Hm i); simplify_option_equality.
729
Qed.
730
End Forall2.
731 732

(** ** Properties on the disjoint maps *)
733 734 735 736 737 738
Lemma map_disjoint_spec {A} (m1 m2 : M A) :
  m1  m2   i x y, m1 !! i = Some x  m2 !! i = Some y  False.
Proof.
  split; intros Hm i; specialize (Hm i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
739 740 741 742 743 744 745 746 747
Lemma map_disjoint_alt {A} (m1 m2 : M A) :
  m1  m2   i, m1 !! i = None  m2 !! i = None.
Proof.
  split; intros Hm1m2 i; specialize (Hm1m2 i);
    destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_disjoint {A} (m1 m2 : M A) :
  ¬m1  m2   i x1 x2, m1 !! i = Some x1  m2 !! i = Some x2.
Proof.
748 749
  unfold disjoint, map_disjoint. rewrite map_not_Forall2 by solve_decision.
  split; [|naive_solver].
750
  intros [i[(x&y&?&?&?)|[(x&?&?&[])|(y&?&?&[])]]]; naive_solver.
751 752
Qed.
Global Instance: Symmetric (@disjoint (M A) _).
753
Proof. intros A m1 m2. rewrite !map_disjoint_spec. naive_solver. Qed.
754
Lemma map_disjoint_empty_l {A} (m : M A) :   m.
755
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
756
Lemma map_disjoint_empty_r {A} (m : M A) : m  .
757
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
758
Lemma map_disjoint_weaken {A} (m1 m1' m2 m2' : M A) :
759
  m1'  m2'  m1  m1'  m2  m2'  m1  m2.
760
Proof. rewrite !map_subseteq_spec, !map_disjoint_spec. eauto. Qed.
761 762 763 764 765 766 767
Lemma map_disjoint_weaken_l {A} (m1 m1' m2  : M A) :
  m1'  m2  m1  m1'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_weaken_r {A} (m1 m2 m2' : M A) :
  m1  m2'  m2  m2'  m1  m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_Some_l {A} (m1 m2 : M A) i x:
768
  m1  m2  m1 !! i = Some x  m2 !! i = None.
769
Proof. rewrite map_disjoint_spec, eq_None_not_Some. intros ?? [??]; eauto. Qed.
770
Lemma map_disjoint_Some_r {A} (m1 m2 : M A) i x:
771
  m1  m2  m2 !! i = Some x  m1 !! i = None.
772
Proof. rewrite (symmetry_iff ()). apply map_disjoint_Some_l. Qed.
773
Lemma map_disjoint_singleton_l {A} (m : M A) i x : {[i, x]}  m  m !! i = None.
774
Proof.
775
  split; [|rewrite !map_disjoint_spec].
776
  * intro. apply (map_disjoint_Some_l {[i, x]} _ _ x);
777
      auto using lookup_singleton.
778
  * intros ? j y1 y2. destruct (decide (i = j)) as [->|].
779 780 781 782
    + rewrite lookup_singleton. intuition congruence.
    + by rewrite lookup_singleton_ne.
Qed.
Lemma map_disjoint_singleton_r {A} (m : M A) i x :
783
  m  {[i, x]}  m !! i = None.
784 785
Proof. by rewrite (symmetry_iff ()), map_disjoint_singleton_l. Qed.
Lemma map_disjoint_singleton_l_2 {A} (m : M A) i x :
786
  m !! i = None  {[i, x]}  m.
787 788
Proof. by rewrite map_disjoint_singleton_l. Qed.
Lemma map_disjoint_singleton_r_2 {A} (m : M A) i x :
789
  m !! i = None  m  {[i, x]}.
790
Proof. by rewrite map_disjoint_singleton_r. Qed.
791
Lemma map_disjoint_delete_l {A} (m1 m2 : M A) i : m1  m2  delete i m1  m2.
792
Proof.
793
  rewrite !map_disjoint_alt. intros Hdisjoint j. destruct (Hdisjoint j); auto.
794 795
  rewrite lookup_delete_None. tauto.
Qed.
796
Lemma map_disjoint_delete_r {A} (m1 m2 : M A) i : m1  m2  m1  delete i m2.
797