list.v 140 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18 19 20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23 24 25 26 27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28 29 30 31 32 33 34 35 36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37 38 39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45 46 47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
48 49
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
50 51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
53
  end.
54

55 56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57 58 59 60 61 62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63

64 65 66
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
67 68
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
69 70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
72
  end.
73 74 75

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
77 78
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
79 80 81 82

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
83
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85
  match l with
  | [] => []
86
  | x :: l => if decide (P x) then x :: filter P l else filter P l
87 88 89 90 91 92 93
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option nat :=
  fix go l :=
  match l with
94
  | [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
95
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
96 97 98 99

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
100
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103 104

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

105 106 107 108
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110 111 112 113 114 115
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
116
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
117 118 119
  end.
Arguments resize {_} !_ _ !_.

120 121 122
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
123 124
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
125
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
126 127
  end.

128
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
129 130 131 132
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
133

134 135 136 137
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
138
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
139 140 141

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
142 143 144 145
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
146 147
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
148
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
149
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
150
  fix go l :=
151
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
152 153 154 155 156

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
157
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
158
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
159 160 161 162 163 164 165 166 167 168 169
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
170

171 172 173 174 175 176 177
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
178 179 180 181

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
182
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
183 184
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
185
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
186

187 188
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
189 190
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
191 192
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
193 194
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
195

196 197 198 199 200 201 202 203
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
204
      if decide_rel (=) x1 x2
205
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
206 207 208 209 210
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
211 212
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
213
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
214

215
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
216 217 218
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
219
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
220
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
221
Infix "`sublist`" := sublist (at level 70) : C_scope.
222
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
223 224

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
225
from [l1] while possiblity changing the order. *)
226 227 228 229
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
230
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
231 232
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
233
Hint Extern 0 (?x `contains` ?y) => reflexivity.
234 235 236 237 238 239 240 241 242 243

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
244
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
245 246
    end.
End contains_dec_help.
247

248 249 250 251 252
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
278
      then list_difference l k else x :: list_difference l k
279
    end.
280
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
281 282 283 284 285
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
286
      then x :: list_intersection l k else list_intersection l k
287 288 289 290 291 292 293 294 295
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
296 297

(** * Basic tactics on lists *)
298 299 300
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
301 302
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
303
  repeat (simpl in H || rewrite app_length in H); exfalso; lia.
304
Tactic Notation "discriminate_list_equality" :=
305 306 307
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
308

309 310 311
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
312 313 314 315 316 317 318 319 320
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
321 322 323
Ltac simplify_list_equality :=
  repeat match goal with
  | _ => progress simplify_equality
324
  | H : _ ++ _ = _ ++ _ |- _ => first
325 326 327
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
328
  | H : [?x] !! ?i = Some ?y |- _ =>
329 330 331
    destruct i; [change (Some x = Some y) in H | discriminate]
  end;
  try discriminate_list_equality.
332 333
Ltac simplify_list_equality' :=
  repeat (progress simpl in * || simplify_list_equality).
334

335 336
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Context {A : Type}.
338 339
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
340

341 342 343
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
344
Proof. intros ???. apply app_inv_head. Qed.
345
Global Instance:  k, Injective (=) (=) (++ k).
346
Proof. intros ???. apply app_inv_tail. Qed.
347 348 349 350 351 352
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
353

354
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
355
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
356 357
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
358
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
359 360 361
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
362 363
Proof.
  revert l2. induction l1; intros [|??] H.
364
  * done.
365 366
  * discriminate (H 0).
  * discriminate (H 0).
367
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
368
Qed.
369
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
370
  Decision (l = k) := list_eq_dec dec.
371 372 373 374 375 376 377 378
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
379
Lemma nil_or_length_pos l : l = []  length l  0.
380
Proof. destruct l; simpl; auto with lia. Qed.
381
Lemma nil_length_inv l : length l = 0  l = [].
382 383
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
384
Proof. by destruct i. Qed.
385
Lemma lookup_tail l i : tail l !! i = l !! S i.
386
Proof. by destruct l. Qed.
387 388
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
389
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
390 391 392 393 394
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
395
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
396 397 398 399 400 401 402 403 404 405
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_length l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  length l2 = length l1 
407
  ( i x y, l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
408
Proof.
409 410 411
  intros Hl ?; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y ?]; [|naive_solver].
    rewrite <-Hl. eauto using lookup_lt_Some.
412
  * by rewrite lookup_ge_None, <-Hl, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
Qed.
414
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
415
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
416 417
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
418
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
419 420 421 422
Proof. revert i. induction l1; intros [|i]; simplify_equality'; auto. Qed.
Lemma lookup_app_r_alt l1 l2 i j :
  j = length l1  (l1 ++ l2) !! (j + i) = l2 !! i.
Proof. intros ->. by apply lookup_app_r. Qed.
423 424
Lemma lookup_app_r_Some l1 l2 i x :
  l2 !! i = Some x  (l1 ++ l2) !! (length l1 + i) = Some x.
425
Proof. by rewrite lookup_app_r. Qed.
426 427 428
Lemma lookup_app_minus_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. intros. rewrite <-(lookup_app_r l1 l2). f_equal. lia. Qed.
429 430
Lemma lookup_app_inv l1 l2 i x :
  (l1 ++ l2) !! i = Some x  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
431
Proof. revert i. induction l1; intros [|i] ?; simplify_equality'; auto. Qed.
432 433 434
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
435

436
Lemma alter_length f l i : length (alter f i l) = length l.
437
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
438
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
439
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
440
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
441
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
442
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
443
Proof.
444
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
445
Qed.
446
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
447 448
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
449
Proof.
450
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
451
Qed.
452 453
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Proof.
455
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
456 457 458
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
459 460
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
461
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
462
Lemma alter_app_r f l1 l2 i :
463
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
464
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
465 466
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
467 468 469 470
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
471 472 473
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
474 475
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
476
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
477 478
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
479
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
480 481
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
482
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
483
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
484
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
485 486
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
487 488 489 490
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
491
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
492
Proof. induction l1; f_equal'; auto. Qed.
493

494
(** ** Properties of the [elem_of] predicate *)
495
Lemma not_elem_of_nil x : x  [].
496
Proof. by inversion 1. Qed.
497
Lemma elem_of_nil x : x  []  False.
498
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
499
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
500
Proof. destruct l. done. by edestruct 1; constructor. Qed.
501 502
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
503
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
504
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
505
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
506
Proof. rewrite elem_of_cons. tauto. Qed.
507
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
508
Proof.
509
  induction l1.
510
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
511
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
512
Qed.
513
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
514
Proof. rewrite elem_of_app. tauto. Qed.
515
Lemma elem_of_list_singleton x y : x  [y]  x = y.
516
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
517
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
518
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
519
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
520
Proof.
521 522
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
523
Qed.
524
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
525
Proof.
526 527
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
528
Qed.
529
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
530
Proof.
531
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
532
Qed.
533 534 535
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.

536
(** ** Properties of the [NoDup] predicate *)
537 538
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
539
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
540
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
541
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
542
Proof. rewrite NoDup_cons. by intros [??]. Qed.
543
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
544
Proof. rewrite NoDup_cons. by intros [??]. Qed.
545
Lemma NoDup_singleton x : NoDup [x].
546
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
547
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
548
Proof.
549
  induction l; simpl.
550
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
551
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
552
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
553
Qed.
554
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
555 556 557 558 559 560 561
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
562 563
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
564 565 566 567 568 569
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
570 571
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
572
Proof.
573 574 575 576 577
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
578
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
579

580 581 582 583 584 585
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
586
    | x :: l =>
587 588 589 590 591 592 593 594
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
595
    end.
596
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
597 598 599 600
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
601
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
602 603 604 605
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
606
End no_dup_dec.
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

671
(** ** Properties of the [filter] function *)
672 673 674 675 676 677 678
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
679
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
680 681 682 683 684
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
685

686 687 688
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
689 690
  Lemma list_find_Some l i :
    list_find P l = Some i   x, l !! i = Some x  P x.
691
  Proof.
692
    revert i. induction l; intros [] ?; simplify_option_equality; eauto.
693 694 695
  Qed.
  Lemma list_find_elem_of l x : x  l  P x   i, list_find P l = Some i.
  Proof.
696 697
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [i ->]; [|exists (S i)].
698 699 700 701 702 703 704
  Qed.
End find.

Section find_eq.
  Context `{ x y, Decision (x = y)}.
  Lemma list_find_eq_Some l i x : list_find (x =) l = Some i  l !! i = Some x.
  Proof.
705 706
    intros.
    destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
707 708 709 710 711
  Qed.
  Lemma list_find_eq_elem_of l x : x  l   i, list_find (x=) l = Some i.
  Proof. eauto using list_find_elem_of. Qed.
End find_eq.

712
(** ** Properties of the [reverse] function *)
713 714
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
715
Lemma reverse_singleton x : reverse [x] = [x].
716
Proof. done. Qed.
717
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
718
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
719
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
720
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
721
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
722
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
723
Lemma reverse_length l : length (reverse l) = length l.