list.v 140 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14
15
16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18
19
20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21
22
23
24
25
26
27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28
29
30
31
32
33
34
35
36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37
38
39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45
46
47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
48
49
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
50
51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
53
  end.
54

55
56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57
58
59
60
61
62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63

64
65
66
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
67
68
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
69
70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
72
  end.
73
74
75

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
77
78
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
80
81
82

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
83
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
  match l with
  | [] => []
86
  | x :: l => if decide (P x) then x :: filter P l else filter P l
87
88
89
90
91
92
93
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option nat :=
  fix go l :=
  match l with
94
  | [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
95
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
97
98
99

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
100
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101
102
103
104

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

105
106
107
108
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
112
113
114
115
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
116
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
117
118
119
  end.
Arguments resize {_} !_ _ !_.

120
121
122
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
123
124
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
125
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
126
127
  end.

128
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
129
130
131
132
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
133

134
135
136
137
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
138
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
139
140
141

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
142
143
144
145
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
146
147
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
148
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
149
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
150
  fix go l :=
151
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
152
153
154
155
156

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
157
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
158
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
159
160
161
162
163
164
165
166
167
168
169
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
170

171
172
173
174
175
176
177
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
178
179
180
181

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
182
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
183
184
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
185
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
186

187
188
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
189
190
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
191
192
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
193
194
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
195

196
197
198
199
200
201
202
203
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
204
      if decide_rel (=) x1 x2
205
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
206
207
208
209
210
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
211
212
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
213
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
214

215
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
216
217
218
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
219
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
220
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
221
Infix "`sublist`" := sublist (at level 70) : C_scope.
222
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
223
224

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
225
from [l1] while possiblity changing the order. *)
226
227
228
229
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
230
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
231
232
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
233
Hint Extern 0 (?x `contains` ?y) => reflexivity.
234
235
236
237
238
239
240
241
242
243

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
244
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
245
246
    end.
End contains_dec_help.
247

248
249
250
251
252
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
278
      then list_difference l k else x :: list_difference l k
279
    end.
280
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
281
282
283
284
285
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
286
      then x :: list_intersection l k else list_intersection l k
287
288
289
290
291
292
293
294
295
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
296
297

(** * Basic tactics on lists *)
298
299
300
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
301
302
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
303
  repeat (simpl in H || rewrite app_length in H); exfalso; lia.
304
Tactic Notation "discriminate_list_equality" :=
305
306
307
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
308

309
310
311
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
312
313
314
315
316
317
318
319
320
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
321
322
323
Ltac simplify_list_equality :=
  repeat match goal with
  | _ => progress simplify_equality
324
  | H : _ ++ _ = _ ++ _ |- _ => first
325
326
327
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
328
  | H : [?x] !! ?i = Some ?y |- _ =>
329
330
331
    destruct i; [change (Some x = Some y) in H | discriminate]
  end;
  try discriminate_list_equality.
332
333
Ltac simplify_list_equality' :=
  repeat (progress simpl in * || simplify_list_equality).
334

335
336
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Context {A : Type}.
338
339
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
340

341
342
343
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
344
Proof. intros ???. apply app_inv_head. Qed.
345
Global Instance:  k, Injective (=) (=) (++ k).
346
Proof. intros ???. apply app_inv_tail. Qed.
347
348
349
350
351
352
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
353

354
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
355
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
356
357
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
358
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
359
360
361
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
362
363
Proof.
  revert l2. induction l1; intros [|??] H.
364
  * done.
365
366
  * discriminate (H 0).
  * discriminate (H 0).
367
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
368
Qed.
369
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
370
  Decision (l = k) := list_eq_dec dec.
371
372
373
374
375
376
377
378
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
379
Lemma nil_or_length_pos l : l = []  length l  0.
380
Proof. destruct l; simpl; auto with lia. Qed.
381
Lemma nil_length_inv l : length l = 0  l = [].
382
383
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
384
Proof. by destruct i. Qed.
385
Lemma lookup_tail l i : tail l !! i = l !! S i.
386
Proof. by destruct l. Qed.
387
388
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
389
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
390
391
392
393
394
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
395
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
396
397
398
399
400
401
402
403
404
405
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_length l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
406
  length l2 = length l1 
407
  ( i x y, l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
408
Proof.
409
410
411
  intros Hl ?; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y ?]; [|naive_solver].
    rewrite <-Hl. eauto using lookup_lt_Some.
412
  * by rewrite lookup_ge_None, <-Hl, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
Qed.
414
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
415
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
416
417
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
418
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
419
420
421
422
Proof. revert i. induction l1; intros [|i]; simplify_equality'; auto. Qed.
Lemma lookup_app_r_alt l1 l2 i j :
  j = length l1  (l1 ++ l2) !! (j + i) = l2 !! i.
Proof. intros ->. by apply lookup_app_r. Qed.
423
424
Lemma lookup_app_r_Some l1 l2 i x :
  l2 !! i = Some x  (l1 ++ l2) !! (length l1 + i) = Some x.
425
Proof. by rewrite lookup_app_r. Qed.
426
427
428
Lemma lookup_app_minus_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. intros. rewrite <-(lookup_app_r l1 l2). f_equal. lia. Qed.
429
430
Lemma lookup_app_inv l1 l2 i x :
  (l1 ++ l2) !! i = Some x  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
431
Proof. revert i. induction l1; intros [|i] ?; simplify_equality'; auto. Qed.
432
433
434
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
435

436
Lemma alter_length f l i : length (alter f i l) = length l.
437
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
438
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
439
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
440
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
441
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
442
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
443
Proof.
444
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
445
Qed.
446
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
447
448
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
449
Proof.
450
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
451
Qed.
452
453
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Proof.
455
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
456
457
458
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
459
460
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
461
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
462
Lemma alter_app_r f l1 l2 i :
463
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
464
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
465
466
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
467
468
469
470
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
471
472
473
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
474
475
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
476
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
477
478
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
479
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
480
481
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
482
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
483
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
484
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
485
486
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
487
488
489
490
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
491
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
492
Proof. induction l1; f_equal'; auto. Qed.
493

494
(** ** Properties of the [elem_of] predicate *)
495
Lemma not_elem_of_nil x : x  [].
496
Proof. by inversion 1. Qed.
497
Lemma elem_of_nil x : x  []  False.
498
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
499
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
500
Proof. destruct l. done. by edestruct 1; constructor. Qed.
501
502
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
503
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
504
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
505
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
506
Proof. rewrite elem_of_cons. tauto. Qed.
507
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
508
Proof.
509
  induction l1.
510
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
511
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
512
Qed.
513
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
514
Proof. rewrite elem_of_app. tauto. Qed.
515
Lemma elem_of_list_singleton x y : x  [y]  x = y.
516
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
517
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
518
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
519
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
520
Proof.
521
522
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
523
Qed.
524
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
525
Proof.
526
527
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
528
Qed.
529
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
530
Proof.
531
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
532
Qed.
533
534
535
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.

536
(** ** Properties of the [NoDup] predicate *)
537
538
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
539
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
540
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
541
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
542
Proof. rewrite NoDup_cons. by intros [??]. Qed.
543
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
544
Proof. rewrite NoDup_cons. by intros [??]. Qed.
545
Lemma NoDup_singleton x : NoDup [x].
546
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
547
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
548
Proof.
549
  induction l; simpl.
550
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
551
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
552
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
553
Qed.
554
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
555
556
557
558
559
560
561
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
562
563
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
564
565
566
567
568
569
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
570
571
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
572
Proof.
573
574
575
576
577
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
578
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
579

580
581
582
583
584
585
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
586
    | x :: l =>
587
588
589
590
591
592
593
594
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
595
    end.
596
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
597
598
599
600
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
601
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
602
603
604
605
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
606
End no_dup_dec.
607

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

671
(** ** Properties of the [filter] function *)
672
673
674
675
676
677
678
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
679
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
680
681
682
683
684
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
685

686
687
688
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
689
690
  Lemma list_find_Some l i :
    list_find P l = Some i   x, l !! i = Some x  P x.
691
  Proof.
692
    revert i. induction l; intros [] ?; simplify_option_equality; eauto.
693
694
695
  Qed.
  Lemma list_find_elem_of l x : x  l  P x   i, list_find P l = Some i.
  Proof.
696
697
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [i ->]; [|exists (S i)].
698
699
700
701
702
703
704
  Qed.
End find.

Section find_eq.
  Context `{ x y, Decision (x = y)}.
  Lemma list_find_eq_Some l i x : list_find (x =) l = Some i  l !! i = Some x.
  Proof.
705
706
    intros.
    destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
707
708
709
710
711
  Qed.
  Lemma list_find_eq_elem_of l x : x  l   i, list_find (x=) l = Some i.
  Proof. eauto using list_find_elem_of. Qed.
End find_eq.

712
(** ** Properties of the [reverse] function *)
713
714
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
715
Lemma reverse_singleton x : reverse [x] = [x].
716
Proof. done. Qed.
717
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
718
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
719
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
720
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
721
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
722
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
723
Lemma reverse_length l : length (reverse l) = length l.
724
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
725
Lemma reverse_involutive l : reverse (reverse l) = l.
726
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Injective (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
742

743
744
745
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
746
747
748
749
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
750

751
752
753
754
755
756
757
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_equality'; f_equal; auto.
Qed.
758
Lemma take_nil n : take n (@nil A) = [].
Robbert Krebbers's avatar
Robbert Krebbers committed
759
Proof. by destruct n. Qed.
760
Lemma take_app l k : take (length l) (l ++ k) = l.
761
Proof. induction l; f_equal'; auto. Qed.
762
Lemma take_app_alt l k n : n = length l  take n (l ++ k) = l.
Robbert Krebbers's avatar
Robbert Krebbers committed
763
Proof. intros Hn. by rewrite Hn, take_app. Qed.