list.v 93 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
5

6
Require Import Permutation.
7
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
11
12
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
13
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

Robbert Krebbers's avatar
Robbert Krebbers committed
15
16
17
Notation Forall_nil_2 := Forall_nil.
Notation Forall_cons_2 := Forall_cons.

18
19
20
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
21
Notation take_drop := firstn_skipn.
22
23
24
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
25
26
27
28
29
30
31
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

32
33
34
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Instance list_lookup {A} : Lookup nat A (list A) :=
36
  fix go (i : nat) (l : list A) {struct l} : option A :=
37
38
39
40
41
  match l with
  | [] => None
  | x :: l =>
    match i with
    | 0 => Some x
42
    | S i => @lookup _ _ _ go i l
43
44
    end
  end.
45
46
47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
48
Instance list_alter {A} (f : A  A) : AlterD nat A (list A) f :=
49
  fix go (i : nat) (l : list A) {struct l} :=
50
51
52
53
54
  match l with
  | [] => []
  | x :: l =>
    match i with
    | 0 => f x :: l
55
    | S i => x :: @alter _ _ _ f go i l
56
57
    end
  end.
58
59
60
61

(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
62
63
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
64
65
66
67
68
  match l with
  | [] => []
  | x :: l =>
    match i with
    | 0 => l
69
    | S i => x :: @delete _ _ go i l
70
    end
71
  end.
72
73
74

(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Instance list_insert {A} : Insert nat A (list A) := λ i x,
76
  alter (λ _, x) i.
77

78
79
(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l :=
  match l with
  | [] => []
  | x :: l =>
     if decide (P x)
     then x :: @filter _ _ (@go) _ _ l
     else @filter _ _ (@go) _ _ l
  end.

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with
  | 0 => []
  | S n => x :: replicate n x
  end.

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l =>
    match n with
    | 0 => []
    | S n => x :: resize n y l
    end
  end.
Arguments resize {_} !_ _ !_.

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.

Definition foldl {A B} (f : A  B  A) : A  list B  A :=
  fix go a l :=
  match l with
  | [] => a
  | x :: l => go (f a x) l
  end.

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap {A B} (f : A  B) : FMapD list f :=
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => f x :: @fmap _ _ _ f go l
  end.
Instance list_bind {A B} (f : A  list B) : MBindD list f :=
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => f x ++ @mbind _ _ _ f go l
  end.
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
  match ls with
  | [] => []
  | l :: ls => l ++ @mjoin _ go _ ls
  end.

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
  match l with
  | [] => []
  | x :: l => f n x :: go (S n) l
  end.
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.

Definition ifoldr {A B} (f : nat  B  A  A)
    (a : nat  A) : nat  list B  A :=
  fix go (n : nat) (l : list B) : A :=
  match l with
  | nil => a n
  | b :: l => f n b (go (S n) l)
  end.

(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with
  | x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2
  | _ , _ => []
  end.
Notation zip := (zip_with pair).

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
  | [] => [ [x] ]
  | y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
  match l with
  | [] => [ [] ]
  | x :: l => permutations l = interleave x
  end.

190
191
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
192
193
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
Robbert Krebbers's avatar
Robbert Krebbers committed
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.

  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
       if decide_rel (=) x1 x2
       then snd_map (x1 ::) (go l1 l2)
       else (x1 :: l1, x2 :: l2, [])
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.

  Definition strip_prefix (l1 l2 : list A) := snd $ fst $ max_prefix_of l1 l2.
  Definition strip_suffix (l1 l2 : list A) := snd $ fst $ max_suffix_of l1 l2.
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
216

217
218
219
220
221
222
223
(** A list [l1] is a sub list of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_cons x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
  | sublist_cons_skip x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).

224
225
226
227
228
229
230
231
(** The [same_length] view allows convenient induction over two lists with the
same length. *)
Inductive same_length {A B} : list A  list B  Prop :=
  | same_length_nil : same_length [] []
  | same_length_cons x y l k :
     same_length l k  same_length (x :: l) (y :: k).

(** * Basic tactics on lists *)
232
233
234
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
235
236
237
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
  repeat (simpl in H || rewrite app_length in H);
238
  exfalso; lia.
239
Tactic Notation "discriminate_list_equality" :=
240
  solve [repeat_on_hyps (fun H => discriminate_list_equality H)].
241

242
243
244
245
246
247
248
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
Lemma cons_inv {A} (l1 l2 : list A) x1 x2 :
  x1 :: l1 = x2 :: l2  x1 = x2  l1 = l2.
Proof. by injection 1. Qed.

249
250
Ltac simplify_list_equality := repeat
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
251
252
253
  | H : _ :: _ = _ :: _ |- _ =>
     apply cons_inv in H; destruct H
     (* to circumvent bug #2939 in some situations *)
254
  | H : _ ++ _ = _ ++ _ |- _ => first
Robbert Krebbers's avatar
Robbert Krebbers committed
255
256
     [ apply app_inj_tail in H; destruct H
     | apply app_inv_head in H
257
     | apply app_inv_tail in H ]
Robbert Krebbers's avatar
Robbert Krebbers committed
258
259
260
  | H : [?x] !! ?i = Some ?y |- _ =>
     destruct i; [change (Some x = Some y) in H|discriminate]
  | _ => progress simplify_equality
261
262
  | H : _ |- _ => discriminate_list_equality H
  end.
263

264
265
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
266
267
Context {A : Type}.

Robbert Krebbers's avatar
Robbert Krebbers committed
268
269
270
271
Global Instance:  x : A, Injective (=) (=) (x ::).
Proof. by injection 1. Qed.
Global Instance:  l : list A, Injective (=) (=) (:: l).
Proof. by injection 1. Qed.
272
273
274
275
Global Instance:  k : list A, Injective (=) (=) (k ++).
Proof. intros ???. apply app_inv_head. Qed.
Global Instance:  k : list A, Injective (=) (=) (++ k).
Proof. intros ???. apply app_inv_tail. Qed.
276
277
278
279
280
281
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
282

Robbert Krebbers's avatar
Robbert Krebbers committed
283
284
285
286
287
Lemma app_inj (l1 k1 l2 k2 : list A) :
  length l1 = length k1 
  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.

288
Lemma list_eq (l1 l2 : list A) : ( i, l1 !! i = l2 !! i)%C  l1 = l2.
289
290
Proof.
  revert l2. induction l1; intros [|??] H.
291
  * done.
292
293
  * discriminate (H 0).
  * discriminate (H 0).
294
295
  * f_equal; [by injection (H 0) |].
    apply IHl1. intro. apply (H (S _)).
296
Qed.
297
298
Lemma list_eq_nil (l : list A) : ( i, l !! i = None)  l = nil.
Proof. intros. by apply list_eq. Qed.
299

300
301
Global Instance list_eq_dec {dec :  x y : A, Decision (x = y)} :  l k,
  Decision (l = k) := list_eq_dec dec.
302
303
Definition list_singleton_dec (l : list A) :
  { x | l = [x] } + { length l  1 }.
Robbert Krebbers's avatar
Robbert Krebbers committed
304
305
306
307
308
309
310
Proof.
 by refine (
  match l with
  | [x] => inleft (x  _)
  | _ => inright _
  end).
Defined.
311

312
313
314
Global Instance: Proper (Permutation ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.

315
316
317
318
319
Lemma nil_or_length_pos (l : list A) : l = []  length l  0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length (l : list A) : length l = 0  l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
320
Proof. by destruct i. Qed.
321
Lemma lookup_tail (l : list A) i : tail l !! i = l !! S i.
322
Proof. by destruct l. Qed.
323

324
325
Lemma lookup_lt_length (l : list A) i :
  is_Some (l !! i)  i < length l.
326
Proof.
327
328
329
330
331
  revert i. induction l.
  * split; by inversion 1.
  * intros [|?]; simpl.
    + split; eauto with arith.
    + by rewrite <-NPeano.Nat.succ_lt_mono.
332
Qed.
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
Lemma lookup_lt_length_1 (l : list A) i :
  is_Some (l !! i)  i < length l.
Proof. apply lookup_lt_length. Qed.
Lemma lookup_lt_length_alt (l : list A) i x :
  l !! i = Some x  i < length l.
Proof. intros Hl. by rewrite <-lookup_lt_length, Hl. Qed.
Lemma lookup_lt_length_2 (l : list A) i :
  i < length l  is_Some (l !! i).
Proof. apply lookup_lt_length. Qed.

Lemma lookup_ge_length (l : list A) i :
  l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_length. lia. Qed.
Lemma lookup_ge_length_1 (l : list A) i :
  l !! i = None  length l  i.
Proof. by rewrite lookup_ge_length. Qed.
Lemma lookup_ge_length_2 (l : list A) i :
  length l  i  l !! i = None.
Proof. by rewrite lookup_ge_length. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
353
354
355
356
357
358
359
360
361
362
363
364
365
Lemma list_eq_length_eq (l1 l2 : list A) :
  length l2 = length l1 
  ( i x y, l1 !! i = Some x  l2 !! i = Some y  x = y) 
  l1 = l2.
Proof.
  intros Hlength Hlookup. apply list_eq. intros i.
  destruct (l2 !! i) as [x|] eqn:E.
  * feed inversion (lookup_lt_length_2 l1 i) as [y].
    { pose proof (lookup_lt_length_alt l2 i x E). lia. }
    f_equal. eauto.
  * rewrite lookup_ge_length in E |- *. lia.
Qed.

366
367
368
369
370
371
372
373
374
375
376
Lemma lookup_app_l (l1 l2 : list A) i :
  i < length l1 
  (l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_l_Some (l1 l2 : list A) i x :
  l1 !! i = Some x 
  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_length_alt. Qed.

Lemma lookup_app_r (l1 l2 : list A) i :
  (l1 ++ l2) !! (length l1 + i) = l2 !! i.
377
Proof.
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
  revert i.
  induction l1; intros [|i]; simpl in *; simplify_equality; auto.
Qed.
Lemma lookup_app_r_alt (l1 l2 : list A) i :
  length l1  i 
  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply lookup_app_r.
Qed.
Lemma lookup_app_r_Some (l1 l2 : list A) i x :
  l2 !! i = Some x 
  (l1 ++ l2) !! (length l1 + i) = Some x.
Proof. by rewrite lookup_app_r. Qed.
Lemma lookup_app_r_Some_alt (l1 l2 : list A) i x :
  length l1  i 
  l2 !! (i - length l1) = Some x 
  (l1 ++ l2) !! i = Some x.
Proof. intro. by rewrite lookup_app_r_alt. Qed.

Lemma lookup_app_inv (l1 l2 : list A) i x :
  (l1 ++ l2) !! i = Some x 
  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
Proof.
  revert i.
  induction l1; intros [|i] ?; simpl in *; simplify_equality; auto.
404
405
Qed.

406
Lemma list_lookup_middle (l1 l2 : list A) (x : A) :
407
  (l1 ++ x :: l2) !! length l1 = Some x.
408
Proof. by induction l1; simpl. Qed.
409

410
411
412
413
414
415
416
417
418
Lemma alter_length (f : A  A) l i :
  length (alter f i l) = length l.
Proof. revert i. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma insert_length (l : list A) i x :
  length (<[i:=x]>l) = length l.
Proof. apply alter_length. Qed.

Lemma list_lookup_alter (f : A  A) l i :
  alter f i l !! i = f <$> l !! i.
419
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
420
Lemma list_lookup_alter_ne (f : A  A) l i j :
421
422
423
424
425
  i  j  alter f i l !! j = l !! j.
Proof.
  revert i j. induction l; [done|].
  intros [|i] [|j] ?; try done. apply (IHl i). congruence.
Qed.
426
427
428
429
430
431
432
433
434
435
436
437
Lemma list_lookup_insert (l : list A) i x :
  i < length l 
  <[i:=x]>l !! i = Some x.
Proof.
  intros Hi. unfold insert, list_insert.
  rewrite list_lookup_alter.
  by feed inversion (lookup_lt_length_2 l i).
Qed.
Lemma list_lookup_insert_ne (l : list A) i j x :
  i  j  <[i:=x]>l !! j = l !! j.
Proof. apply list_lookup_alter_ne. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
438
439
440
441
442
443
444
445
446
447
448
Lemma list_lookup_other (l : list A) i x :
  length l  1 
  l !! i = Some x 
   j y, j  i  l !! j = Some y.
Proof.
  intros Hl Hi.
  destruct i; destruct l as [|x0 [|x1 l]]; simpl in *; simplify_equality.
  * by exists 1 x1.
  * by exists 0 x0.
Qed.

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
Lemma alter_app_l (f : A  A) (l1 l2 : list A) i :
  i < length l1 
  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof.
  revert i.
  induction l1; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma alter_app_r (f : A  A) (l1 l2 : list A) i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof.
  revert i.
  induction l1; intros [|?]; simpl in *; f_equal; auto.
Qed.
Lemma alter_app_r_alt (f : A  A) (l1 l2 : list A) i :
  length l1  i 
  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
469

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
Lemma insert_app_l (l1 l2 : list A) i x :
  i < length l1 
  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. apply alter_app_l. Qed.
Lemma insert_app_r (l1 l2 : list A) i x :
  <[length l1 + i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. apply alter_app_r. Qed.
Lemma insert_app_r_alt (l1 l2 : list A) i x :
  length l1  i 
  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof. apply alter_app_r_alt. Qed.

Lemma insert_consecutive_length (l : list A) i k :
  length (insert_consecutive i k l) = length l.
Proof. revert i. by induction k; intros; simpl; rewrite ?insert_length. Qed.
485

486
487
488
489
Lemma delete_middle (l1 l2 : list A) x :
  delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
Proof. induction l1; simpl; f_equal; auto. Qed.

490
(** ** Properties of the [elem_of] predicate *)
491
492
493
494
495
496
Lemma not_elem_of_nil (x : A) : x  [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil (x : A) : x  []  False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv (l : list A) : ( x, x  l)  l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
497
Lemma elem_of_cons (l : list A) x y :
498
  x  y :: l  x = y  x  l.
499
500
Proof.
  split.
501
502
  * inversion 1; subst. by left. by right.
  * intros [?|?]; subst. by left. by right.
503
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
504
505
506
507
Lemma not_elem_of_cons (l : list A) x y :
  x  y :: l  x  y  x  l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app (l1 l2 : list A) x :
508
  x  l1 ++ l2  x  l1  x  l2.
509
Proof.
510
511
512
513
  induction l1.
  * split; [by right|]. intros [Hx|]; [|done].
    by destruct (elem_of_nil x).
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
514
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
515
516
517
518
Lemma not_elem_of_app (l1 l2 : list A) x :
  x  l1 ++ l2  x  l1  x  l2.
Proof. rewrite elem_of_app. tauto. Qed.

519
520
Lemma elem_of_list_singleton (x y : A) : x  [y]  x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
521

522
523
524
Global Instance elem_of_list_permutation_proper (x : A) :
  Proper (Permutation ==> iff) (x ).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
525

Robbert Krebbers's avatar
Robbert Krebbers committed
526
Lemma elem_of_list_split (l : list A) x :
527
528
529
530
531
532
  x  l   l1 l2, l = l1 ++ x :: l2.
Proof.
  induction 1 as [x l|x y l ? [l1 [l2 ?]]].
  * by eexists [], l.
  * subst. by exists (y :: l1) l2.
Qed.
533

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)} :
   (x : A) l, Decision (x  l).
Proof.
 intros x. refine (
  fix go l :=
  match l return Decision (x  l) with
  | [] => right (not_elem_of_nil _)
  | y :: l => cast_if_or (decide_rel (=) x y) (go l)
  end); clear go dec; subst; try (by constructor); by inversion 1.
Defined.

Lemma elem_of_list_lookup_1 (l : list A) x :
  x  l   i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH].
  * by exists 0.
  * destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_2 (l : list A) i x :
  l !! i = Some x  x  l.
Proof.
  revert i. induction l; intros [|i] ?;
    simpl; simplify_equality; constructor; eauto.
Qed.
Lemma elem_of_list_lookup (l : list A) x :
  x  l   i, l !! i = Some x.
560
Proof.
561
562
  firstorder eauto using
    elem_of_list_lookup_1, elem_of_list_lookup_2.
563
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
564

565
(** ** Properties of the [NoDup] predicate *)
566
567
568
569
570
571
572
573
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
Lemma NoDup_cons (x : A) l : NoDup (x :: l)  x  l  NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 (x : A) l : NoDup (x :: l)  x  l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 (x : A) l : NoDup (x :: l)  NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
574
Lemma NoDup_singleton (x : A) : NoDup [x].
575
576
Proof. constructor. apply not_elem_of_nil. constructor. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
577
Lemma NoDup_app (l k : list A) :
578
  NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
579
Proof.
580
581
582
583
584
  induction l; simpl.
  * rewrite NoDup_nil.
    setoid_rewrite elem_of_nil. naive_solver.
  * rewrite !NoDup_cons.
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app.
585
586
587
588
589
590
split.
destruct IHl.
intros [??].
split.
    naive_solver.

591
    naive_solver.
592
naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
593
594
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
595
Global Instance NoDup_proper:
596
597
598
599
600
601
602
603
  Proper (Permutation ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
604

605
606
607
608
609
610
611
612
Lemma NoDup_Permutation (l k : list A) :
  NoDup l  NoDup k  ( x, x  l  x  k)  Permutation l k.
Proof.
  intros Hl. revert k. induction Hl as [|x l Hin ? IH].
  * intros k _ Hk.
    rewrite (elem_of_nil_inv k); [done |].
    intros x. rewrite <-Hk, elem_of_nil. intros [].
  * intros k Hk Hlk.
Robbert Krebbers's avatar
Robbert Krebbers committed
613
    destruct (elem_of_list_split k x) as [l1 [l2 ?]]; subst.
614
615
616
617
618
619
620
621
    { rewrite <-Hlk. by constructor. }
    rewrite <-Permutation_middle, NoDup_cons in Hk.
    destruct Hk as [??].
    apply Permutation_cons_app, IH; [done |].
    intros y. specialize (Hlk y).
    rewrite <-Permutation_middle, !elem_of_cons in Hlk.
    naive_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
622

623
624
Global Instance NoDup_dec {dec :  x y : A, Decision (x = y)} :
     (l : list A), Decision (NoDup l) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
625
626
  fix NoDup_dec l :=
  match l return Decision (NoDup l) with
627
  | [] => left NoDup_nil_2
Robbert Krebbers's avatar
Robbert Krebbers committed
628
  | x :: l =>
629
630
    match decide_rel () x l with
    | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
Robbert Krebbers's avatar
Robbert Krebbers committed
631
632
    | right Hin =>
      match NoDup_dec l with
633
634
      | left H => left (NoDup_cons_2 _ _ Hin H)
      | right H => right (H  NoDup_cons_12 _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
635
636
637
638
      end
    end
  end.

639
640
Section remove_dups.
  Context `{! x y : A, Decision (x = y)}.
641

642
643
644
645
646
647
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
648

649
650
651
652
653
654
  Lemma elem_of_remove_dups l x :
    x  remove_dups l  x  l.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
655

656
657
658
659
660
661
  Lemma remove_dups_nodup l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End remove_dups.
662

663
(** ** Properties of the [filter] function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
664
665
666
667
668
669
670
671
672
673
674
675
676
Lemma elem_of_list_filter `{ x : A, Decision (P x)} l x :
  x  filter P l  P x  x  l.
Proof.
  unfold filter. induction l; simpl; repeat case_decide;
     rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
Qed.
Lemma filter_nodup P `{ x : A, Decision (P x)} l :
  NoDup l  NoDup (filter P l).
Proof.
  unfold filter. induction 1; simpl; repeat case_decide;
    rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
Qed.

677
(** ** Properties of the [reverse] function *)
678
679
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
680
681
Lemma reverse_singleton (x : A) : reverse [x] = [x].
Proof. done. Qed.
682
683
684
685
686
687
688
689
690
691
Lemma reverse_cons (l : list A) x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc (l : list A) x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app (l1 l2 : list A) :
  reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length (l : list A) : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive (l : list A) : reverse (reverse l) = l.
692
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
693

694
(** ** Properties of the [take] function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
Lemma take_nil n :
  take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app (l k : list A) :
  take (length l) (l ++ k) = l.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma take_app_alt (l k : list A) n :
  n = length l 
  take n (l ++ k) = l.
Proof. intros Hn. by rewrite Hn, take_app. Qed.
Lemma take_app_le (l k : list A) n :
  n  length l 
  take n (l ++ k) = take n l.
Proof.
  revert n;
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_app_ge (l k : list A) n :
  length l  n 
  take n (l ++ k) = l ++ take (n - length l) k.
Proof.
  revert n;
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_ge (l : list A) n :
  length l  n 
  take n l = l.
Proof.
  revert n.
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.

Lemma take_take (l : list A) n m :
  take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; simpl; f_equal; auto. Qed.
Lemma take_idempotent (l : list A) n :
  take n (take n l) = take n l.
Proof. by rewrite take_take, Min.min_idempotent. Qed.

Lemma take_length (l : list A) n :
  length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; simpl; f_equal; done. Qed.
Lemma take_length_alt (l : list A) n :
  n  length l 
  length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.

Lemma lookup_take (l : list A) n i :
  i < n  take n l !! i = l !! i.
Proof.
  revert n i. induction l; intros [|n] i ?; trivial.
  * auto with lia.
  * destruct i; simpl; auto with arith.
Qed.
Lemma lookup_take_ge (l : list A) n i :
  n  i  take n l !! i = None.
Proof.
  revert n i.
  induction l; intros [|?] [|?] ?; simpl; auto with lia.
Qed.
Lemma take_alter (f : A  A) l n i :
  n  i  take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  * by rewrite !lookup_take_ge.
  * by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert (l : list A) n i x :
  n  i  take n (<[i:=x]>l) = take n l.
Proof take_alter _ _ _ _.

766
(** ** Properties of the [drop] function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
Lemma drop_nil n :
  drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_app (l k : list A) :
  drop (length l) (l ++ k) = k.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma drop_app_alt (l k : list A) n :
  n = length l 
  drop n (l ++ k) = k.
Proof. intros Hn. by rewrite Hn, drop_app. Qed.
Lemma drop_length (l : list A) n :
  length (drop n l) = length l - n.
Proof.
  revert n. by induction l; intros [|i]; simpl; f_equal.
Qed.
Lemma drop_all (l : list A) :
  drop (length l) l = [].
Proof. induction l; simpl; auto. Qed.
Lemma drop_all_alt (l : list A) n :
  n = length l 
  drop n l = [].
Proof. intros. subst. by rewrite drop_all. Qed.

Lemma lookup_drop (l : list A) n i :
  drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter (f : A  A) l n i  :
  i < n  drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert (l : list A) n i x :
  i < n  drop n (<[i:=x]>l) = drop n l.
Proof drop_alter _ _ _ _.

803
804
805
806
807
Lemma delete_take_drop (l : list A) i :
  delete i l = take i l ++ drop (S i) l.
Proof. revert i. induction l; intros [|?]; simpl; auto using f_equal. Qed.

(** ** Properties of the [replicate] function *)
808
809
810
811
812
Lemma replicate_length n (x : A) : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n (x : A) i :
  i < n 
  replicate n x !! i = Some x.
813
Proof.
814
815
816
817
818
819
820
821
822
  revert i.
  induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma lookup_replicate_inv n (x y : A) i :
  replicate n x !! i = Some y  y = x  i < n.
Proof.
  revert i.
  induction n; intros [|?]; naive_solver auto with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
Lemma replicate_plus n m (x : A) :
  replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; simpl; f_equal; auto. Qed.

Lemma take_replicate n m (x : A) :
  take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma take_replicate_plus n m (x : A) :
  take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m (x : A) :
  drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma drop_replicate_plus n m (x : A) :
  drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.

840
(** ** Properties of the [resize] function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
Lemma resize_spec (l : list A) n x :
  resize n x l = take n l ++ replicate (n - length l) x.
Proof.
  revert n.
  induction l; intros [|?]; simpl; f_equal; auto.
Qed.
Lemma resize_0 (l : list A) x :
  resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n (x : A) :
  resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. simpl. f_equal. lia. Qed.
Lemma resize_ge (l : list A) n x :
  length l  n 
  resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le (l : list A) n x :
  n  length l 
  resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (NPeano.Nat.sub_0_le _ _)) by done.
862
  simpl. by rewrite (right_id [] (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
Qed.

Lemma resize_all (l : list A) x :
  resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt (l : list A) n x :
  n = length l 
  resize n x l = l.
Proof. intros. subst. by rewrite resize_all. Qed.

Lemma resize_plus (l : list A) n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
  revert n m.
  induction l; intros [|?] [|?]; simpl; f_equal; auto.
878
  * by rewrite plus_0_r, (right_id [] (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
  * by rewrite replicate_plus.
Qed.
Lemma resize_plus_eq (l : list A) n m x :
  length l = n 
  resize (n + m) x l = l ++ replicate m x.
Proof.
  intros. subst.
  by rewrite resize_plus, resize_all, drop_all, resize_nil.
Qed.

Lemma resize_app_le (l1 l2 : list A) n x :
  n  length l1 
  resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros.
  by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app_ge (l1 l2 : list A) n x :
  length l1  n 
  resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
  intros.
901
  rewrite !resize_spec, take_app_ge, (associative (++)) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
  do 2 f_equal. rewrite app_length. lia.
Qed.

Lemma resize_length (l : list A) n x : length (resize n x l) = n.
Proof.
  rewrite resize_spec, app_length, replicate_length, take_length. lia.
Qed.
Lemma resize_replicate (x : A) n m :
  resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; simpl; f_equal; auto. Qed.

Lemma resize_resize (l : list A) n m x :
  n  m 
  resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite !resize_nil, resize_replicate.
  * intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_idempotent (l : list A) n x :
  resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.

Lemma resize_take_le (l : list A) n m x :
  n  m 
  resize n x (take m l) = resize n x l.
Proof.
  revert n m.
  induction l; intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_take_eq (l : list A) n x :
  resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.

Lemma take_resize (l : list A) n m x :
  take n (resize m x l) = resize (min n m) x l.
Proof.
  revert n m.
  induction l; intros [|?] [|?]; simpl; f_equal; auto using take_replicate.
Qed.
Lemma take_resize_le (l : list A) n m x :
  n  m 
  take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_eq (l : list A) n x :
  take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_length_resize (l : list A) n x :
  length l  n 
  take (length l) (resize n x l) = l.
Proof. intros. by rewrite take_resize_le, resize_all. Qed.
Lemma take_length_resize_alt (l : list A) n m x :
  m = length l 
  m  n 
  take m (resize n x l) = l.
Proof. intros. subst. by apply take_length_resize. Qed.
Lemma take_resize_plus (l : list A) n m x :
  take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.

Lemma drop_resize_le (l : list A) n m x :
  n  m 
  drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  * intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_plus (l : list A) n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
973

974
(** ** Properties of the [sublist] predicate *)
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
Lemma sublist_nil_l (l : list A) :
  sublist [] l.
Proof. induction l; try constructor; auto. Qed.
Lemma sublist_nil_r (l : list A) :
  sublist l []  l = [].
Proof. split. by inversion 1. intros. subst. constructor. Qed.

Lemma sublist_app_skip_l (k : list A) l1 l2 :
  sublist l1 l2 
  sublist l1 (k ++ l2).
Proof. induction k; try constructor; auto. Qed.
Lemma sublist_app_skip_r (k : list A) l1 l2 :
  sublist l1 l2 
  sublist l1 (l2 ++ k).
Proof. induction 1; simpl; try constructor; auto using sublist_nil_l. Qed.

Lemma sublist_cons_r (x : A) l k :
  sublist l (x :: k)  sublist l k   l', l = x :: l'  sublist l' k.
Proof.
  split.
  * inversion 1; eauto.
  * intros [?|(?&?&?)]; subst; constructor; auto.
Qed.
Lemma sublist_cons_l (x : A) l k :
  sublist (x :: l) k   k1 k2, k = k1 ++ x :: k2  sublist l k2.
Proof.
  split.
  * intros Hlk. induction k as [|y k IH]; inversion Hlk.
    + eexists [], k. by repeat constructor.
    + destruct IH as (k1 & k2 & ? & ?); subst; auto.
      by exists (y :: k1) k2.
  * intros (k1 & k2 & ? & ?). subst.
    by apply sublist_app_skip_l, sublist_cons.
Qed.

Lemma sublist_app_compat (l1 l2 k1 k2 : list A) :
  sublist l1 l2  sublist k1 k2 
  sublist (l1 ++ k1) (l2 ++ k2).
Proof. induction 1; simpl; try constructor; auto. Qed.

Lemma sublist_app_r (l k1 k2 : list A) :
  sublist l (k1 ++ k2)   l1 l2,
    l = l1 ++ l2  sublist l1 k1  sublist l2 k2.
Proof.
  split.
  * revert l k2. induction k1 as [|y k1 IH]; intros l k2; simpl.
    { eexists [], l. by repeat constructor. }
    rewrite sublist_cons_r. intros [?|(l' & ? &?)]; subst.
    + destruct (IH l k2) as (l1&l2&?&?&?); trivial; subst.
      exists l1 l2. auto using sublist_cons_skip.
    + destruct (IH l' k2) as (l1&l2&?&?&?); trivial; subst.
      exists (y :: l1) l2. auto using sublist_cons.
  * intros (?&?&?&?&?); subst. auto using sublist_app_compat.
Qed.
Lemma sublist_app_l (l1 l2 k : list A) :
  sublist (l1 ++ l2) k   k1 k2,
    k = k1 ++ k2  sublist l1 k1  sublist l2 k2.
Proof.
  split.
  * revert l2 k. induction l1 as [|x l1 IH]; intros l2 k; simpl.
    { eexists [], k. by repeat constructor. }
    rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
    destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
    exists (k1 ++ x :: h1) h2. rewrite <-(associative (++)).
    auto using sublist_app_skip_l, sublist_cons.
  * intros (?&?&?&?&?); subst. auto using sublist_app_compat.
Qed.

Global Instance: PreOrder (@sublist A).
Proof.
  split.
  * intros l. induction l; constructor; auto.
  * intros l1 l2 l3 Hl12. revert l3. induction Hl12.
    + auto using sublist_nil_l.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_app_skip_l, sublist_cons.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_app_skip_l, sublist_cons_skip.
Qed.

Lemma sublist_length (l1 l2 : list A) :
  sublist l1 l2  length l1  length l2.
Proof. induction 1; simpl; auto with arith. Qed.

Lemma sublist_take (l : list A) i :
  sublist (take i l) l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_app_skip_r. Qed.
Lemma sublist_drop (l : list A) i :
  sublist (drop i l) l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_app_skip_l. Qed.
Lemma sublist_delete (l : list A) i :
  sublist (delete i l) l.
Proof. revert i. by induction l; intros [|?]; simpl; constructor. Qed.
Lemma sublist_delete_list (l : list A) is :
  sublist (delete_list is l) l.
Proof.
  induction is as [|i is IH]; simpl; [done |].
  transitivity (delete_list is l); auto using sublist_delete.
Qed.

Lemma sublist_alt (l1 l2 : list A) :
  sublist l1 l2   is, l1 = delete_list is l2.
Proof.
  split.
  * intros Hl12.
    cut ( k,  is, k ++ l1 = delete_list is (k ++ l2)).
    { intros help. apply (help []). }
    induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
    + by eexists [].
    + destruct (IH (k ++ [x])) as [is His]. exists is.
      by rewrite <-!(associative (++)) in His.
    + destruct (IH k) as [is His]. exists (is ++ [length k]).
      unfold delete_list. rewrite fold_right_app. simpl.
      by rewrite delete_middle.
  * intros [is ?]. subst. apply sublist_delete_list.
Qed.

Global Instance: AntiSymmetric (@sublist A).
Proof.
  intros l1 l2 Hl12 Hl21. apply sublist_length in Hl21.
  induction Hl12; simpl in *.
  * done.
  * f_equal. auto with arith.
  * apply sublist_length in Hl12. lia.
Qed.
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
End general_properties.

(** ** Properties of the [same_length] predicate *)
Instance:  A, Reflexive (@same_length A A).
Proof. intros A l. induction l; constructor; auto. Qed.
Instance:  A, Symmetric (@same_length A A).
Proof. induction 1; constructor; auto. Qed.

Section same_length.
  Context {A B : Type}.

  Lemma same_length_length_1 (l : list A) (k : list B) :
    same_length l k  length l = length k.
  Proof. induction 1; simpl; auto. Qed.
  Lemma same_length_length_2 (l : list A) (k : list B) :
    length l = length k  same_length l k.
  Proof.
    revert k. induction l; intros [|??]; try discriminate;
      constructor; auto with arith.
  Qed.
  Lemma same_length_length (l : list A) (k : list B) :
    same_length l k  length l = length k.
  Proof. split; auto using same_length_length_1, same_length_length_2. Qed.

  Lemma same_length_lookup (l : list A) (k : list B) i :
    same_length l k  is_Some (l !! i)  is_Some (k !! i).
  Proof.
    rewrite same_length_length.
    setoid_rewrite lookup_lt_length.
    intros E. by rewrite E.
  Qed.

  Lemma same_length_take (l1 : list A) (l2 : list B) n :
    same_length l1 l2 
    same_length (take n l1) (take n l2).
  Proof.
    intros Hl. revert n; induction Hl; intros [|n]; constructor; auto.
  Qed.
  Lemma same_length_drop (l1 : list A) (l2 : list B) n :
    same_length l1 l2 
    same_length (drop n l1) (drop n l2).
  Proof.
    intros Hl.
    revert n; induction Hl; intros [|n]; simpl; try constructor; auto.
  Qed.
  Lemma same_length_resize (l1 : list A) (l2 : list B) x1 x2 n :
    same_length (resize n x1 l1) (resize n x2 l2).
  Proof. apply same_length_length. by rewrite !resize_length. Qed.
End same_length.
1149

1150
(** ** Properties of the [Forall] and [Exists] predicate *)
1151
Section Forall_Exists.
1152
  Context {A} (P : A  Prop).
1153

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
  Lemma Forall_forall l :
    Forall P l   x, x  l  P x.
  Proof.
    split.
    * induction 1; inversion 1; subst; auto.
    * intros Hin. induction l; constructor.
      + apply Hin. constructor.
      + apply IHl. intros ??. apply Hin. by constructor.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
1164
1165
1166
1167
1168
1169
1170
1171
  Lemma Forall_nil : Forall P []  True.
  Proof. done. Qed.
  Lemma Forall_cons_1 x l : Forall P (x :: l)  P x  Forall P l.
  Proof. by inversion 1. Qed.
  Lemma Forall_cons x l : Forall P (x :: l)  P x  Forall P l.
  Proof. split. by inversion 1. intros [??]. by constructor. Qed.
  Lemma Forall_singleton x : Forall P [x]  P x.
  Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
  Lemma Forall_app l1 l2 : Forall P (l1 ++ l2)  Forall P l1  Forall P l2.
  Proof.
    split.
    * induction l1; inversion 1; intuition.
    * intros [H ?]. induction H; simpl; intuition.
  Qed.
  Lemma Forall_true l : ( x, P x)  Forall P l.
  Proof. induction l; auto. Qed.
  Lemma Forall_impl l (Q : A  Prop) :
    Forall P l  ( x, P x  Q x)  Forall Q l.
  Proof. intros H ?. induction H; auto. Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
1183

1184
1185
1186
1187
1188
1189
1190
1191
1192
  Global Instance Forall_proper:
    Proper (pointwise_relation _ () ==> (=) ==> ()) (@Forall A).
  Proof. split; subst; induction 1; constructor; firstorder. Qed.

  Lemma Forall_iff l (Q : A  Prop) :
    ( x, P x  Q x) 
    Forall P l  Forall Q l.
  Proof. intros H. apply Forall_proper. red. apply H. done. Qed.

1193
1194
1195
1196
1197
1198
1199
1200
  Lemma Forall_delete l i : Forall P l  Forall P (delete i l).
  Proof.
    intros H. revert i.
    by induction H; intros [|i]; try constructor.
  Qed.
  Lemma Forall_lookup l :
    Forall P l   i x, l !! i = Some x  P x.
  Proof.
1201
    rewrite Forall_forall. setoid_rewrite elem_of_list_lookup.
Robbert Krebbers's avatar