fin_maps.v 89.3 KB
Newer Older
1
(* Copyright (c) 2012-2017, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector fin_collections.
9 10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12 13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14 15 16 17 18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24 25 26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
29 30
Hint Mode FinMapToList ! - - : typeclass_instances.
Hint Mode FinMapToList - - ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

32 33
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
34
    EqDecision K} := {
35 36
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
37 38 39 40
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
41
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
42
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
43 44
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
45
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
46
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
47
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
48 49
}.

50 51 52
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
53 54
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
55 56 57 58 59 60 61 62 63 64
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
65
  fold_right (λ p, <[p.1:=p.2]>) .
66

67 68
Instance map_size `{FinMapToList K A M} : Size M := λ m, length (map_to_list m).

69 70 71 72 73 74
Definition map_to_collection `{FinMapToList K A M,
    Singleton B C, Empty C, Union C} (f : K  A  B) (m : M) : C :=
  of_list (curry f <$> map_to_list m).
Definition map_of_collection `{Elements B C, Insert K A M, Empty M}
    (f : B  K * A) (X : C) : M :=
  map_of_list (f <$> elements X).
Robbert Krebbers's avatar
Robbert Krebbers committed
75

76 77 78 79 80 81
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
82

83 84 85
(** Higher precedence to make sure it's not used for other types with a [Lookup]
instance, such as lists. *)
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 20 :=
86
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
87

88 89
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
90
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
91
  λ m,  i x, m !! i = Some x  P i x.
92
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
93 94
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
95
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
97
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
98
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
99
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
100
Hint Extern 0 (_ ## _) => symmetry; eassumption : core.
101 102
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ## m) (only parsing) : stdpp_scope.
103
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
104
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
105 106 107 108 109

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
110
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
111 112 113
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

114 115
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
116
Instance map_difference `{Merge M} {A} : Difference (M A) :=
117
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
118

119 120
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
121 122
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
123 124
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

125 126 127 128 129 130 131
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A  B  C) : M A  M B  M C :=
  merge (λ mx my,
    match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).

132 133 134 135 136
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

137
Instance map_filter `{FinMapToList K A M, Insert K A M, Empty M} : Filter (K * A) M :=
138 139
  λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) .

140 141 142 143
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
144 145
(** ** Setoids *)
Section setoid.
146
  Context `{Equiv A}.
147

148 149 150 151
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

152
  Global Instance map_equivalence : Equivalence (@{A})  Equivalence (@{M A}).
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154
  Proof.
    split.
155 156
    - by intros m i.
    - by intros m1 m2 ? i.
157
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
158
  Qed.
159
  Global Instance lookup_proper (i : K) : Proper ((@{M A}) ==> ()) (lookup i).
Robbert Krebbers's avatar
Robbert Krebbers committed
160 161
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
162
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) partial_alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
163 164 165 166 167 168
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
169
    Proper (() ==> () ==> (@{M A})) (insert i).
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
171
  Global Instance singleton_proper k : Proper (() ==> (@{M A})) (singletonM k).
172 173 174 175
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
176
  Global Instance delete_proper (i : K) : Proper (() ==> (@{M A})) (delete i).
Robbert Krebbers's avatar
Robbert Krebbers committed
177 178
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
179
    Proper ((() ==> ()) ==> (=) ==> () ==> (@{M A})) alter.
Robbert Krebbers's avatar
Robbert Krebbers committed
180 181 182 183
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
184 185
  Lemma merge_ext `{Equiv B, Equiv C} (f g : option A  option B  option C)
      `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
186
    (() ==> () ==> ())%signature f g 
187
    (() ==> () ==> (@{M _}))%signature (merge f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
188 189 190 191
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
192
    Proper ((() ==> () ==> ()) ==> () ==> () ==>(@{M A})) union_with.
Robbert Krebbers's avatar
Robbert Krebbers committed
193 194 195
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
196
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
198
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
199 200
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
201 202 203
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
204
  Qed.
205
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
206
    Proper (() ==> ()) f  Proper (() ==> (@{M _})) (fmap f).
207 208 209
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
210 211 212
End setoid.

(** ** General properties *)
213 214 215 216 217
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
218
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
219 220
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
221
Global Instance map_included_preorder {A} (R : relation A) :
222
  PreOrder R  PreOrder (map_included R : relation (M A)).
223
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
  split; [intros m i; by destruct (m !! i); simpl|].
225
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
226
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
227
    done || etrans; eauto.
228
Qed.
229
Global Instance map_subseteq_po : PartialOrder (@{M A}).
230
Proof.
231 232 233
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
234 235 236
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
237
Proof. rewrite !map_subseteq_spec. auto. Qed.
238 239 240 241 242 243
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
244 245
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
246 247
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
248 249
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
250 251 252 253 254 255
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
256
Lemma lookup_empty_Some {A} i (x : A) : ¬( : M A) !! i = Some x.
257 258
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
259 260 261
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
262 263
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
264 265 266 267 268
Lemma map_fmap_empty_inv {A B} (f : A  B) m : f <$> m =   m = .
Proof.
  intros Hm. apply map_eq; intros i. generalize (f_equal (lookup i) Hm).
  by rewrite lookup_fmap, !lookup_empty, fmap_None.
Qed.
269

270 271 272 273 274
Lemma map_subset_alt {A} (m1 m2 : M A) :
  m1  m2  m1  m2   i, m1 !! i = None  is_Some (m2 !! i).
Proof.
  rewrite strict_spec_alt. split.
  - intros [? Heq]; split; [done|].
275
    destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
276 277 278 279 280 281 282 283 284 285
      as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
         |Hm%(not_Exists_Forall _)]; [eauto|].
    destruct Heq; apply (anti_symm _), map_subseteq_spec; [done|intros i x Hi].
    assert (is_Some (m1 !! i)) as [x' ?].
    { by apply not_eq_None_Some,
        (proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
    by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
  - intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.

286
(** ** Properties of the [partial_alter] operation *)
287 288 289
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
290 291
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
292 293
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
294 295
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
296 297
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
298
Qed.
299
Lemma partial_alter_commute {A} f g (m : M A) i j :
300
  i  j  partial_alter f i (partial_alter g j m) =
301 302
    partial_alter g j (partial_alter f i m).
Proof.
303 304 305 306
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
307
  - by rewrite lookup_partial_alter,
308
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
309
  - by rewrite !lookup_partial_alter_ne by congruence.
310 311 312 313
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
314 315
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
316
Qed.
317
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
318
Proof. by apply partial_alter_self_alt. Qed.
319
Lemma partial_alter_subseteq {A} f (m : M A) i :
320
  m !! i = None  m  partial_alter f i m.
321 322 323 324
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
325
Lemma partial_alter_subset {A} f (m : M A) i :
326
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
327
Proof.
328 329
  intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
  exists i. by rewrite lookup_partial_alter.
330 331 332
Qed.

(** ** Properties of the [alter] operation *)
333
Lemma lookup_alter {A} (f : A  A) (m : M A) i : alter f i m !! i = f <$> m !! i.
334
Proof. unfold alter. apply lookup_partial_alter. Qed.
335 336
Lemma lookup_alter_ne {A} (f : A  A) (m : M A) i j :
  i  j  alter f i m !! j = m !! j.
337
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
338 339 340
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
341 342 343 344 345 346 347 348 349
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
350
Lemma lookup_alter_Some {A} (f : A  A) (m : M A) i j y :
351 352 353
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
354
  destruct (decide (i = j)) as [->|?].
355
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
356
  - rewrite lookup_alter_ne by done. naive_solver.
357
Qed.
358
Lemma lookup_alter_None {A} (f : A  A) (m : M A) i j :
359 360
  alter f i m !! j = None  m !! j = None.
Proof.
361 362
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
363
Qed.
364
Lemma lookup_alter_is_Some {A} (f : A  A) (m : M A) i j :
365 366
  is_Some (alter f i m !! j)  is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
367
Lemma alter_id {A} (f : A  A) (m : M A) i :
Robbert Krebbers's avatar
Robbert Krebbers committed
368
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
369
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
370
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
371
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
372
  by rewrite lookup_alter_ne by done.
373
Qed.
374 375 376 377 378 379 380 381 382 383 384 385
Lemma alter_mono {A} f (m1 m2 : M A) i : m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
  m1  m2  alter f i m1  alter f i m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using alter_mono.
  exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
386 387 388 389 390 391 392 393 394 395

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
396
  - destruct (decide (i = j)) as [->|?];
397
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
398
  - intros [??]. by rewrite lookup_delete_ne.
399
Qed.
400 401 402
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
403 404 405
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
406 407
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
408 409 410 411 412 413 414 415 416
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
417
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
418
Proof.
419 420
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
421
Qed.
422 423 424
Lemma delete_idemp {A} (m : M A) i :
  delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
425 426 427 428 429 430 431 432 433
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
434 435 436
Lemma delete_insert_delete {A} (m : M A) i x :
  delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
437 438
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
439
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
440 441 442
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
443
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
444
Proof.
445 446
  intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
  exists i. rewrite lookup_delete; eauto.
447
Qed.
448
Lemma delete_mono {A} (m1 m2 : M A) i : m1  m2  delete i m1  delete i m2.
449
Proof.
450 451
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
452 453 454 455 456
Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
457
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
458
Proof. rewrite lookup_insert. congruence. Qed.
459
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
460
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
461 462
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
463 464 465 466 467 468 469
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
470
  - destruct (decide (i = j)) as [->|?];
471
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
472
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
473
Qed.
474 475 476
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
477 478 479
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
480 481 482
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
483 484 485
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
486
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
487
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
488 489 490 491 492 493 494 495
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
496 497
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
498
Qed.
499
Lemma insert_empty {A} i (x : A) : <[i:=x]>( : M A) = {[i := x]}.
500 501 502 503 504 505
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.

506
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
507
Proof. apply partial_alter_subseteq. Qed.
508
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
509
Proof. intro. apply partial_alter_subset; eauto. Qed.
510 511 512 513 514
Lemma insert_mono {A} (m1 m2 : M A) i x : m1  m2  <[i:=x]> m1  <[i:=x]>m2.
Proof.
  rewrite !map_subseteq_spec.
  intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
515
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
516
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
517
Proof.
518
  intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
519
Qed.
520

521
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
522
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
523
Proof.
524 525 526 527
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
528 529
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
530
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
531
Proof.
532 533
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
534 535
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
536 537
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
538
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
539
Proof.
540 541 542
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
543 544
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
545
  m1 !! i = None  <[i:=x]> m1  m2 
546 547
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
548
  intros Hi Hm1m2. exists (delete i m2). split_and?.
549 550
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
551 552
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
553 554 555 556
Qed.

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
557
  ({[i := x]} : M A) !! j = Some y  i = j  x = y.
558
Proof.
559
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
560
Qed.
561 562
Lemma lookup_singleton_None {A} i j (x : A) :
  ({[i := x]} : M A) !! j = None  i  j.
563
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
564
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
565
Proof. by rewrite lookup_singleton_Some. Qed.
566 567
Lemma lookup_singleton_ne {A} i j (x : A) :
  i  j  ({[i := x]} : M A) !! j = None.
568
Proof. by rewrite lookup_singleton_None. Qed.
569
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  ( : M A).
570 571 572 573
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
574
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>({[i := x]} : M A) = {[i := y]}.
575
Proof.
576
  unfold singletonM, map_singleton, insert, map_insert.
577 578
  by rewrite <-partial_alter_compose.
Qed.
579 580
Lemma alter_singleton {A} (f : A  A) i x :
  alter f i ({[i := x]} : M A) = {[i := f x]}.
581
Proof.
582
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
583 584
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
585 586
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
587
  i  j  alter f i ({[j := x]} : M A) = {[j := x]}.
588
Proof.
589 590
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
591
Qed.
592
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  ( : M A).
593
Proof. apply insert_non_empty. Qed.
594
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = ( : M A).
595
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
596
Lemma delete_singleton_ne {A} i j (x : A) :
597
  i  j  delete i ({[j := x]} : M A) = {[j := x]}.
598
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
599

600 601 602 603 604
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
605 606 607
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
608 609
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
610
Qed.
611 612 613 614 615 616
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
617 618 619 620
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
621 622
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
623
Qed.
624
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
625 626 627
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
628
Lemma omap_singleton {A B} (f : A  option B) i x y :
629
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
630
Proof.
631 632
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
633
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
634 635 636
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
637
  g  f <$> m = g <$> (f <$> m).
Robbert Krebbers's avatar
Robbert Krebbers committed
638
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
639
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) (m : M A) :
640 641 642 643 644
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
645
Lemma map_fmap_ext {A B} (f1 f2 : A  B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
646 647 648 649 650
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
651
Lemma omap_ext {A B} (f1 f2 : A  option B) (m : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
652 653 654 655 656
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
Lemma map_fmap_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A  B) (m1 m2 : M A) :
  m1  m2  f <$> m1  f <$> m2.
Proof.
  rewrite !map_subset_alt.
  intros [? (j&?&?)]; split; auto using map_fmap_mono.
  exists j. by rewrite !lookup_fmap, fmap_None, fmap_is_Some.
Qed.
Lemma map_omap_mono {A B} (f : A  option B) (m1 m2 : M A) :
  m1  m2  omap f m1  omap f m2.
Proof.
  rewrite !map_subseteq_spec; intros Hm i x.
  rewrite !lookup_omap, !bind_Some. naive_solver.
Qed.

678
(** ** Properties of conversion to lists *)
679 680 681
Lemma elem_of_map_to_list' {A} (m : M A) ix :
  ix  map_to_list m  m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
682
Lemma map_to_list_unique {A} (m : M A) i x y :
683
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
684
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
685
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
686
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
687
Lemma elem_of_map_of_list_1' {A} (l : list (K * A)) i x :
688
  ( y, (i,y)  l  x = y)  (i,x)  l  (map_of_list l : M A) !! i = Some x.
689 690 691
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
692
  intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
693
  destruct (decide (i = j)) as [->|].
694
  - rewrite lookup_insert; f_equal; eauto using eq_sym.
695
  - rewrite lookup_insert_ne by done; eauto.
696
Qed.
697
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
698
  NoDup (l.*1)  (i,x)  l  (map_of_list l : M A) !! i = Some x.
699
Proof.
700
  intros ? Hx; apply elem_of_map_of_list_1'; eauto using NoDup_fmap_fst.
701
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
702
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
703
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
704 705
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
706
  (map_of_list l : M A) !! i = Some x  (i,x)  l.
707
Proof.
708 709 710
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
711
Qed.
712 713
Lemma elem_of_map_of_list' {A} (l : list (K * A)) i x :
  ( x', (i,x)  l  (i,x')  l  x = x') 
714
  (i,x)  l  (map_of_list l : M A) !! i = Some x.
715
Proof. split; auto using elem_of_map_of_list_1', elem_of_map_of_list_2. Qed.