fin_maps.v 73.6 KB
Newer Older
1
(* Copyright (c) 2012-2017, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9 10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12 13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14 15 16 17 18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24 25 26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30 31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33 34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35 36 37 38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41 42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
}.

48 49 50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51 52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53 54 55 56 57 58 59 60 61 62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
66
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
67

68 69 70 71 72 73
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
74

75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
76
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78 79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
80
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  λ m,  i x, m !! i = Some x  P i x.
82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
85
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
87
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
88 89 90 91 92
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
93
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
95 96 97 98 99

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
100
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
101 102 103
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

104 105
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
106
Instance map_difference `{Merge M} {A} : Difference (M A) :=
107
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109 110
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
111 112
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
113 114
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

115 116 117 118 119
(* Folds a function [f] over a map. The order in which the function is called
is unspecified. *)
Definition map_fold `{FinMapToList K A M} {B}
  (f : K  A  B  B) (b : B) : M  B := foldr (curry f) b  map_to_list.

120 121 122 123
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
124 125
(** ** Setoids *)
Section setoid.
126
  Context `{Equiv A}.
127

128 129 130 131
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

132 133
  Global Instance map_equivalence :
    Equivalence (() : relation A)  Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
134 135
  Proof.
    split.
136 137
    - by intros m i.
    - by intros m1 m2 ? i.
138
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
139
  Qed.
140 141
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
142 143
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
144
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
145 146 147 148 149 150
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
151
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
152
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
153 154
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
155 156 157 158
  Proof.
    intros ???; apply insert_proper; [done|].
    intros ?. rewrite lookup_empty; constructor.
  Qed.
159 160
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
161 162
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
163
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
164 165 166 167
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
168
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
169
    (() ==> () ==> ())%signature f g 
170
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
171 172 173 174
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
175
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
176 177 178
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
179
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
181
  Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
182 183
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
184 185 186
    split; [intros Hm; apply map_eq; intros i|intros ->].
    - generalize (Hm i). by rewrite lookup_empty, equiv_None.
    - intros ?. rewrite lookup_empty; constructor.
187
  Qed.
188 189 190 191 192
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
193 194 195
End setoid.

(** ** General properties *)
196 197 198 199 200
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
201
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
202 203
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
204 205
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
206
  split; [intros m i; by destruct (m !! i); simpl|].
207
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
208
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
209
    done || etrans; eauto.
210
Qed.
211
Global Instance: PartialOrder (() : relation (M A)).
212
Proof.
213 214 215
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
216 217 218
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
219
Proof. rewrite !map_subseteq_spec. auto. Qed.
220 221 222 223 224 225
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
226 227
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
228 229
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
230 231
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
232 233 234 235 236 237 238 239 240
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
241 242 243
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
244 245
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
246 247

(** ** Properties of the [partial_alter] operation *)
248 249 250
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
251 252
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
253 254
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
255 256
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
257 258
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
259
Qed.
260
Lemma partial_alter_commute {A} f g (m : M A) i j :
261
  i  j  partial_alter f i (partial_alter g j m) =
262 263
    partial_alter g j (partial_alter f i m).
Proof.
264 265 266 267
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
268
  - by rewrite lookup_partial_alter,
269
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
270
  - by rewrite !lookup_partial_alter_ne by congruence.
271 272 273 274
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
275 276
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
277
Qed.
278
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
279
Proof. by apply partial_alter_self_alt. Qed.
280
Lemma partial_alter_subseteq {A} f (m : M A) i :
281
  m !! i = None  m  partial_alter f i m.
282 283 284 285
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
286
Lemma partial_alter_subset {A} f (m : M A) i :
287
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
288
Proof.
289 290 291 292
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
293 294 295
Qed.

(** ** Properties of the [alter] operation *)
296 297
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
298
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
299
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
300
Proof. unfold alter. apply lookup_partial_alter. Qed.
301
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
302
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
303 304 305 306 307 308 309 310 311
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
312 313 314 315
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
316
  destruct (decide (i = j)) as [->|?].
317
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
318
  - rewrite lookup_alter_ne by done. naive_solver.
319 320 321 322
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
323 324
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
325
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
326 327
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
328
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
330
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
331
  by rewrite lookup_alter_ne by done.
332 333 334 335 336 337 338 339 340 341 342
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
343
  - destruct (decide (i = j)) as [->|?];
344
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
345
  - intros [??]. by rewrite lookup_delete_ne.
346
Qed.
347 348 349
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
350 351 352
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
353 354
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
355 356 357
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
358
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
359 360 361 362 363 364 365
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
366
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
367
Proof.
368 369
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
370 371 372 373 374 375 376 377 378 379
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
380 381
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
382
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
383 384 385
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
386
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
387
  m1  m2  delete i m1  delete i m2.
388 389 390 391
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
392
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
393
Proof.
394 395 396
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
397
Qed.
398
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
399 400 401 402 403
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
404
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
405
Proof. rewrite lookup_insert. congruence. Qed.
406
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
407
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
408 409
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
410 411 412 413 414 415 416
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
417
  - destruct (decide (i = j)) as [->|?];
418
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
419
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
420
Qed.
421 422 423
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
424 425 426
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
427 428 429
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
430
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
431
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
432 433 434 435 436 437 438 439
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
440 441
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
442
Qed.
443
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
444
Proof. apply partial_alter_subseteq. Qed.
445
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
446 447
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
448
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
449
Proof.
450 451 452
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
453 454
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
455
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
456
Proof.
457 458 459 460
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
461 462
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
463
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
464
Proof.
465 466
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
467 468
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
469 470
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
471
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
472
Proof.
473 474 475
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
476 477
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
478
  m1 !! i = None  <[i:=x]> m1  m2 
479 480
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
481
  intros Hi Hm1m2. exists (delete i m2). split_and?.
482 483
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
484 485
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
486
Qed.
487
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
488
Proof. done. Qed.
489 490 491 492
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
493 494 495

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
496
  {[i := x]} !! j = Some y  i = j  x = y.
497
Proof.
498
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
499
Qed.
500
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
501
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
502
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
503
Proof. by rewrite lookup_singleton_Some. Qed.
504
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
505
Proof. by rewrite lookup_singleton_None. Qed.
506
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
507 508 509 510
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
511
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
512
Proof.
513
  unfold singletonM, map_singleton, insert, map_insert.
514 515
  by rewrite <-partial_alter_compose.
Qed.
516
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
517
Proof.
518
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
519 520
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
521 522
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
523
  i  j  alter f i {[j := x]} = {[j := x]}.
524
Proof.
525 526
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
527
Qed.
528 529
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
530

531 532 533 534 535
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
536 537 538
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
539 540
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
541
Qed.
542 543 544 545 546 547
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
548 549 550 551
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
552 553
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
554
Qed.
555
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
556 557 558
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
559
Lemma omap_singleton {A B} (f : A  option B) i x y :
560
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
561
Proof.
562 563
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
564
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
565 566 567 568 569
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
570
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
571 572 573 574 575
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
576 577 578 579 580 581
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
582 583 584 585 586 587
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
588

589 590
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
591
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
592
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
593
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
594
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
595 596 597 598 599
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
600
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
601
  destruct (decide (i = j)) as [->|].
602 603
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
604
Qed.
605
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
606
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
607
Proof.
608 609
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
610
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
611
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
612 613
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
614
  map_of_list l !! i = Some x  (i,x)  l.
615
Proof.
616 617 618
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
619 620
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
621
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
622
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
623
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
624
  i  l.*1  map_of_list l !! i = None.
625
Proof.
626 627
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
628 629
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
630
  map_of_list l !! i = None  i  l.*1.
631
Proof.
632
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
633
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
634 635
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
636 637
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
638
  i  l.*1  map_of_list l !! i = None.
639
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
640
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
641
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
642 643 644 645 646
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
647
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
648
Proof.
649
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
650 651
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
652
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
653 654 655
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
656
    by auto using NoDup_fst_map_to_list.
657 658
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
659
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
660
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
661
Lemma map_to_list_inj {A} (m1 m2 : M A) :
662
  map_to_list m1  map_to_list m2  m1 = m2.
663
Proof.
664
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
665
  auto using map_of_list_proper, NoDup_fst_map_to_list.
666
Qed.
667 668 669 670 671 672
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
673 674 675 676 677 678 679 680 681 682 683 684 685

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_of_list_fmap {A B} (f : A  B) l :
  map_of_list (prod_map id f <$> l) = f <$> map_of_list l.
Proof.
  induction l as [|[i x] l IH]; csimpl; rewrite ?fmap_empty; auto.
  rewrite <-map_of_list_cons; simpl. by rewrite IH, <-fmap_insert.
Qed.

686
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
687 688 689 690 691
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
692
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
693
Proof.
694
  intros. apply map_of_list_inj; csimpl.
695 696
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
697
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
698
    rewrite elem_of_map_to_list in Hlookup. congruence.
699
  - by rewrite !map_of_to_list.
700
Qed.
701 702 703 704 705 706
Lemma map_to_list_singleton {A} i (x : A) : map_to_list {[i:=x]} = [(i,x)].
Proof.
  apply Permutation_singleton. unfold singletonM, map_singleton.
  by rewrite map_to_list_insert, map_to_list_empty by auto using lookup_empty.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
707 708
Lemma map_to_list_submseteq {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 + map_to_list m2.
709
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
710
  intros; apply NoDup_submseteq; auto using NoDup_map_to_list.
711 712
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
713 714 715 716 717 718 719 720 721 722
Lemma map_to_list_fmap {A B} (f : A  B) m :
  map_to_list (f <$> m)  prod_map id f <$> map_to_list m.
Proof.
  assert (NoDup ((prod_map id f <$> map_to_list m).*1)).
  { erewrite <-list_fmap_compose, (list_fmap_ext _ fst) by done.
    apply NoDup_fst_map_to_list. }
  rewrite <-(map_of_to_list m) at 1.
  by rewrite <-map_of_list_fmap, map_to_of_list.
Qed.