list.v 80.7 KB
Newer Older
1
2
3
4
(* Copyright (c) 2012, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
5

6
7
Require Import Permutation.
Require Export base decidable option numbers.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
11
12
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
13
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

Robbert Krebbers's avatar
Robbert Krebbers committed
15
16
17
Notation Forall_nil_2 := Forall_nil.
Notation Forall_cons_2 := Forall_cons.

18
19
20
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
21
Notation take_drop := firstn_skipn.
22
23
24
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
25
26
27
28
29
30
31
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

32
(** * General definitions *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
(** Looking up, updating, and deleting elements of a list. *)
Instance list_lookup {A} : Lookup nat A (list A) :=
35
  fix go (i : nat) (l : list A) {struct l} : option A :=
36
37
38
39
40
  match l with
  | [] => None
  | x :: l =>
    match i with
    | 0 => Some x
41
    | S i => @lookup _ _ _ go i l
42
43
    end
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
44
Instance list_alter {A} (f : A  A) : AlterD nat A (list A) f :=
45
  fix go (i : nat) (l : list A) {struct l} :=
46
47
48
49
50
  match l with
  | [] => []
  | x :: l =>
    match i with
    | 0 => f x :: l
51
    | S i => x :: @alter _ _ _ f go i l
52
53
    end
  end.
54
55
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
56
57
58
59
60
  match l with
  | [] => []
  | x :: l =>
    match i with
    | 0 => l
61
    | S i => x :: @delete _ _ go i l
62
    end
63
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
64
Instance list_insert {A} : Insert nat A (list A) := λ i x,
65
  alter (λ _, x) i.
66

Robbert Krebbers's avatar
Robbert Krebbers committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
(** The function [option_list] converts an element of the option type into
a list. *)
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l :=
  match l with
  | [] => []
  | x :: l =>
     if decide (P x)
     then x :: @filter _ _ (@go) _ _ l
     else @filter _ _ (@go) _ _ l
  end.

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with
  | 0 => []
  | S n => x :: replicate n x
  end.

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l =>
    match n with
    | 0 => []
    | S n => x :: resize n y l
    end
  end.
Arguments resize {_} !_ _ !_.

108
109
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
110
Definition suffix_of {A} (l1 l2 : list A) : Prop :=  k, l2 = k ++ l1.
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
Definition prefix_of {A} (l1 l2 : list A) : Prop :=  k, l2 = l1 ++ k.
Definition max_prefix_of `{ x y : A, Decision (x = y)} :
    list A  list A  list A * list A * list A :=
  fix go l1 l2 :=
  match l1, l2 with
  | [], l2 => ([], l2, [])
  | l1, [] => (l1, [], [])
  | x1 :: l1, x2 :: l2 =>
     if decide_rel (=) x1 x2
     then snd_map (x1 ::) (go l1 l2)
     else (x1 :: l1, x2 :: l2, [])
  end.
Definition max_suffix_of `{ x y : A, Decision (x = y)} (l1 l2 : list A) :
    list A * list A * list A :=
  match max_prefix_of (reverse l1) (reverse l2) with
  | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
130
131
132
133
134
135

(** * Tactics on lists *)
Lemma cons_inv {A} (l1 l2 : list A) x1 x2 :
  x1 :: l1 = x2 :: l2  x1 = x2  l1 = l2.
Proof. by injection 1. Qed.

(** The tactic [discriminate_list_equality] discharges goals containing
invalid list equalities as an assumption. *)
136
137
138
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
  repeat (simpl in H || rewrite app_length in H);
139
  exfalso; lia.
140
Tactic Notation "discriminate_list_equality" :=
141
  solve [repeat_on_hyps (fun H => discriminate_list_equality H)].
142

Robbert Krebbers's avatar
Robbert Krebbers committed
143
144
(** The tactic [simplify_list_equality] simplifies assumptions involving
equalities on lists. *)
145
146
Ltac simplify_list_equality := repeat
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
147
148
149
  | H : _ :: _ = _ :: _ |- _ =>
     apply cons_inv in H; destruct H
     (* to circumvent bug #2939 in some situations *)
150
  | H : _ ++ _ = _ ++ _ |- _ => first
Robbert Krebbers's avatar
Robbert Krebbers committed
151
152
     [ apply app_inj_tail in H; destruct H
     | apply app_inv_head in H
153
     | apply app_inv_tail in H ]
Robbert Krebbers's avatar
Robbert Krebbers committed
154
155
156
  | H : [?x] !! ?i = Some ?y |- _ =>
     destruct i; [change (Some x = Some y) in H|discriminate]
  | _ => progress simplify_equality
157
158
  | H : _ |- _ => discriminate_list_equality H
  end.
159

160
161
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
Context {A : Type}.

Robbert Krebbers's avatar
Robbert Krebbers committed
164
165
166
167
Global Instance:  x : A, Injective (=) (=) (x ::).
Proof. by injection 1. Qed.
Global Instance:  l : list A, Injective (=) (=) (:: l).
Proof. by injection 1. Qed.
168
169
170
171
Global Instance:  k : list A, Injective (=) (=) (k ++).
Proof. intros ???. apply app_inv_head. Qed.
Global Instance:  k : list A, Injective (=) (=) (++ k).
Proof. intros ???. apply app_inv_tail. Qed.
172
173
174
175
176
177
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
178

Robbert Krebbers's avatar
Robbert Krebbers committed
179
180
181
182
183
Lemma app_inj (l1 k1 l2 k2 : list A) :
  length l1 = length k1 
  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.

184
185
186
Lemma list_eq (l1 l2 : list A) : ( i, l1 !! i = l2 !! i)  l1 = l2.
Proof.
  revert l2. induction l1; intros [|??] H.
187
  * done.
188
189
  * discriminate (H 0).
  * discriminate (H 0).
190
191
  * f_equal; [by injection (H 0) |].
    apply IHl1. intro. apply (H (S _)).
192
Qed.
193
194
Lemma list_eq_nil (l : list A) : ( i, l !! i = None)  l = nil.
Proof. intros. by apply list_eq. Qed.
195

196
197
Global Instance list_eq_dec {dec :  x y : A, Decision (x = y)} :  l k,
  Decision (l = k) := list_eq_dec dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
198
199
200
201
202
203
204
205
Definition list_singleton_dec (l : list A) : { x | l = [x] } + { length l  1 }.
Proof.
 by refine (
  match l with
  | [x] => inleft (x  _)
  | _ => inright _
  end).
Defined.
206
207
208
209
210
211

Lemma nil_or_length_pos (l : list A) : l = []  length l  0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length (l : list A) : length l = 0  l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
212
Proof. by destruct i. Qed.
213
Lemma lookup_tail (l : list A) i : tail l !! i = l !! S i.
214
Proof. by destruct l. Qed.
215

216
217
Lemma lookup_lt_length (l : list A) i :
  is_Some (l !! i)  i < length l.
218
Proof.
219
220
221
222
223
  revert i. induction l.
  * split; by inversion 1.
  * intros [|?]; simpl.
    + split; eauto with arith.
    + by rewrite <-NPeano.Nat.succ_lt_mono.
224
Qed.
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
Lemma lookup_lt_length_1 (l : list A) i :
  is_Some (l !! i)  i < length l.
Proof. apply lookup_lt_length. Qed.
Lemma lookup_lt_length_alt (l : list A) i x :
  l !! i = Some x  i < length l.
Proof. intros Hl. by rewrite <-lookup_lt_length, Hl. Qed.
Lemma lookup_lt_length_2 (l : list A) i :
  i < length l  is_Some (l !! i).
Proof. apply lookup_lt_length. Qed.

Lemma lookup_ge_length (l : list A) i :
  l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_length. lia. Qed.
Lemma lookup_ge_length_1 (l : list A) i :
  l !! i = None  length l  i.
Proof. by rewrite lookup_ge_length. Qed.
Lemma lookup_ge_length_2 (l : list A) i :
  length l  i  l !! i = None.
Proof. by rewrite lookup_ge_length. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
245
246
247
248
249
250
251
252
253
254
255
256
257
Lemma list_eq_length_eq (l1 l2 : list A) :
  length l2 = length l1 
  ( i x y, l1 !! i = Some x  l2 !! i = Some y  x = y) 
  l1 = l2.
Proof.
  intros Hlength Hlookup. apply list_eq. intros i.
  destruct (l2 !! i) as [x|] eqn:E.
  * feed inversion (lookup_lt_length_2 l1 i) as [y].
    { pose proof (lookup_lt_length_alt l2 i x E). lia. }
    f_equal. eauto.
  * rewrite lookup_ge_length in E |- *. lia.
Qed.

258
259
260
261
262
263
264
265
266
267
268
Lemma lookup_app_l (l1 l2 : list A) i :
  i < length l1 
  (l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_l_Some (l1 l2 : list A) i x :
  l1 !! i = Some x 
  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_length_alt. Qed.

Lemma lookup_app_r (l1 l2 : list A) i :
  (l1 ++ l2) !! (length l1 + i) = l2 !! i.
269
Proof.
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  revert i.
  induction l1; intros [|i]; simpl in *; simplify_equality; auto.
Qed.
Lemma lookup_app_r_alt (l1 l2 : list A) i :
  length l1  i 
  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply lookup_app_r.
Qed.
Lemma lookup_app_r_Some (l1 l2 : list A) i x :
  l2 !! i = Some x 
  (l1 ++ l2) !! (length l1 + i) = Some x.
Proof. by rewrite lookup_app_r. Qed.
Lemma lookup_app_r_Some_alt (l1 l2 : list A) i x :
  length l1  i 
  l2 !! (i - length l1) = Some x 
  (l1 ++ l2) !! i = Some x.
Proof. intro. by rewrite lookup_app_r_alt. Qed.

Lemma lookup_app_inv (l1 l2 : list A) i x :
  (l1 ++ l2) !! i = Some x 
  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
Proof.
  revert i.
  induction l1; intros [|i] ?; simpl in *; simplify_equality; auto.
296
297
Qed.

298
Lemma list_lookup_middle (l1 l2 : list A) (x : A) :
299
  (l1 ++ x :: l2) !! length l1 = Some x.
300
Proof. by induction l1; simpl. Qed.
301

302
303
304
305
306
307
308
309
310
Lemma alter_length (f : A  A) l i :
  length (alter f i l) = length l.
Proof. revert i. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma insert_length (l : list A) i x :
  length (<[i:=x]>l) = length l.
Proof. apply alter_length. Qed.

Lemma list_lookup_alter (f : A  A) l i :
  alter f i l !! i = f <$> l !! i.
311
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
312
Lemma list_lookup_alter_ne (f : A  A) l i j :
313
314
315
316
317
  i  j  alter f i l !! j = l !! j.
Proof.
  revert i j. induction l; [done|].
  intros [|i] [|j] ?; try done. apply (IHl i). congruence.
Qed.
318
319
320
321
322
323
324
325
326
327
328
329
Lemma list_lookup_insert (l : list A) i x :
  i < length l 
  <[i:=x]>l !! i = Some x.
Proof.
  intros Hi. unfold insert, list_insert.
  rewrite list_lookup_alter.
  by feed inversion (lookup_lt_length_2 l i).
Qed.
Lemma list_lookup_insert_ne (l : list A) i j x :
  i  j  <[i:=x]>l !! j = l !! j.
Proof. apply list_lookup_alter_ne. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
330
331
332
333
334
335
336
337
338
339
340
Lemma list_lookup_other (l : list A) i x :
  length l  1 
  l !! i = Some x 
   j y, j  i  l !! j = Some y.
Proof.
  intros Hl Hi.
  destruct i; destruct l as [|x0 [|x1 l]]; simpl in *; simplify_equality.
  * by exists 1 x1.
  * by exists 0 x0.
Qed.

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
Lemma alter_app_l (f : A  A) (l1 l2 : list A) i :
  i < length l1 
  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof.
  revert i.
  induction l1; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma alter_app_r (f : A  A) (l1 l2 : list A) i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof.
  revert i.
  induction l1; intros [|?]; simpl in *; f_equal; auto.
Qed.
Lemma alter_app_r_alt (f : A  A) (l1 l2 : list A) i :
  length l1  i 
  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
Lemma insert_app_l (l1 l2 : list A) i x :
  i < length l1 
  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. apply alter_app_l. Qed.
Lemma insert_app_r (l1 l2 : list A) i x :
  <[length l1 + i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. apply alter_app_r. Qed.
Lemma insert_app_r_alt (l1 l2 : list A) i x :
  length l1  i 
  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof. apply alter_app_r_alt. Qed.

Lemma insert_consecutive_length (l : list A) i k :
  length (insert_consecutive i k l) = length l.
Proof. revert i. by induction k; intros; simpl; rewrite ?insert_length. Qed.
377

378
379
380
381
382
383
Lemma not_elem_of_nil (x : A) : x  [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil (x : A) : x  []  False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv (l : list A) : ( x, x  l)  l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
Lemma elem_of_cons (l : list A) x y :
385
  x  y :: l  x = y  x  l.
386
387
Proof.
  split.
388
389
  * inversion 1; subst. by left. by right.
  * intros [?|?]; subst. by left. by right.
390
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
392
393
394
Lemma not_elem_of_cons (l : list A) x y :
  x  y :: l  x  y  x  l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app (l1 l2 : list A) x :
395
  x  l1 ++ l2  x  l1  x  l2.
396
Proof.
397
398
399
400
  induction l1.
  * split; [by right|]. intros [Hx|]; [|done].
    by destruct (elem_of_nil x).
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
401
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
403
404
405
Lemma not_elem_of_app (l1 l2 : list A) x :
  x  l1 ++ l2  x  l1  x  l2.
Proof. rewrite elem_of_app. tauto. Qed.

406
407
Lemma elem_of_list_singleton (x y : A) : x  [y]  x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
408

409
410
411
Global Instance elem_of_list_permutation_proper (x : A) :
  Proper (Permutation ==> iff) (x ).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
412

Robbert Krebbers's avatar
Robbert Krebbers committed
413
Lemma elem_of_list_split (l : list A) x :
414
415
416
417
418
419
  x  l   l1 l2, l = l1 ++ x :: l2.
Proof.
  induction 1 as [x l|x y l ? [l1 [l2 ?]]].
  * by eexists [], l.
  * subst. by exists (y :: l1) l2.
Qed.
420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)} :
   (x : A) l, Decision (x  l).
Proof.
 intros x. refine (
  fix go l :=
  match l return Decision (x  l) with
  | [] => right (not_elem_of_nil _)
  | y :: l => cast_if_or (decide_rel (=) x y) (go l)
  end); clear go dec; subst; try (by constructor); by inversion 1.
Defined.

Lemma elem_of_list_lookup_1 (l : list A) x :
  x  l   i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH].
  * by exists 0.
  * destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_2 (l : list A) i x :
  l !! i = Some x  x  l.
Proof.
  revert i. induction l; intros [|i] ?;
    simpl; simplify_equality; constructor; eauto.
Qed.
Lemma elem_of_list_lookup (l : list A) x :
  x  l   i, l !! i = Some x.
447
Proof.
448
449
  firstorder eauto using
    elem_of_list_lookup_1, elem_of_list_lookup_2.
450
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
451

452
453
454
455
456
457
458
459
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
Lemma NoDup_cons (x : A) l : NoDup (x :: l)  x  l  NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 (x : A) l : NoDup (x :: l)  x  l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 (x : A) l : NoDup (x :: l)  NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
Lemma NoDup_singleton (x : A) : NoDup [x].
461
462
Proof. constructor. apply not_elem_of_nil. constructor. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
463
Lemma NoDup_app (l k : list A) :
464
  NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
465
Proof.
466
467
468
469
470
471
  induction l; simpl.
  * rewrite NoDup_nil.
    setoid_rewrite elem_of_nil. naive_solver.
  * rewrite !NoDup_cons.
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app.
    naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
472
473
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
474
Global Instance NoDup_proper:
475
476
477
478
479
480
481
482
  Proper (Permutation ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
483

484
485
486
487
488
489
490
491
Lemma NoDup_Permutation (l k : list A) :
  NoDup l  NoDup k  ( x, x  l  x  k)  Permutation l k.
Proof.
  intros Hl. revert k. induction Hl as [|x l Hin ? IH].
  * intros k _ Hk.
    rewrite (elem_of_nil_inv k); [done |].
    intros x. rewrite <-Hk, elem_of_nil. intros [].
  * intros k Hk Hlk.
Robbert Krebbers's avatar
Robbert Krebbers committed
492
    destruct (elem_of_list_split k x) as [l1 [l2 ?]]; subst.
493
494
495
496
497
498
499
500
    { rewrite <-Hlk. by constructor. }
    rewrite <-Permutation_middle, NoDup_cons in Hk.
    destruct Hk as [??].
    apply Permutation_cons_app, IH; [done |].
    intros y. specialize (Hlk y).
    rewrite <-Permutation_middle, !elem_of_cons in Hlk.
    naive_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
501

502
503
Global Instance NoDup_dec {dec :  x y : A, Decision (x = y)} :
     (l : list A), Decision (NoDup l) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
504
505
  fix NoDup_dec l :=
  match l return Decision (NoDup l) with
506
  | [] => left NoDup_nil_2
Robbert Krebbers's avatar
Robbert Krebbers committed
507
  | x :: l =>
508
509
    match decide_rel () x l with
    | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
Robbert Krebbers's avatar
Robbert Krebbers committed
510
511
    | right Hin =>
      match NoDup_dec l with
512
513
      | left H => left (NoDup_cons_2 _ _ Hin H)
      | right H => right (H  NoDup_cons_12 _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
514
515
516
517
      end
    end
  end.

518
519
Section remove_dups.
  Context `{! x y : A, Decision (x = y)}.
520

521
522
523
524
525
526
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
527

528
529
530
531
532
533
  Lemma elem_of_remove_dups l x :
    x  remove_dups l  x  l.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
534

535
536
537
538
539
540
  Lemma remove_dups_nodup l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End remove_dups.
541

Robbert Krebbers's avatar
Robbert Krebbers committed
542
543
544
545
546
547
548
549
550
551
552
553
554
Lemma elem_of_list_filter `{ x : A, Decision (P x)} l x :
  x  filter P l  P x  x  l.
Proof.
  unfold filter. induction l; simpl; repeat case_decide;
     rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
Qed.
Lemma filter_nodup P `{ x : A, Decision (P x)} l :
  NoDup l  NoDup (filter P l).
Proof.
  unfold filter. induction 1; simpl; repeat case_decide;
    rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
Qed.

555
556
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
557
558
Lemma reverse_singleton (x : A) : reverse [x] = [x].
Proof. done. Qed.
559
560
561
562
563
564
565
566
567
568
569
570
Lemma reverse_cons (l : list A) x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc (l : list A) x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app (l1 l2 : list A) :
  reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length (l : list A) : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive (l : list A) : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed. 

Robbert Krebbers's avatar
Robbert Krebbers committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
Lemma take_nil n :
  take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app (l k : list A) :
  take (length l) (l ++ k) = l.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma take_app_alt (l k : list A) n :
  n = length l 
  take n (l ++ k) = l.
Proof. intros Hn. by rewrite Hn, take_app. Qed.
Lemma take_app_le (l k : list A) n :
  n  length l 
  take n (l ++ k) = take n l.
Proof.
  revert n;
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_app_ge (l k : list A) n :
  length l  n 
  take n (l ++ k) = l ++ take (n - length l) k.
Proof.
  revert n;
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_ge (l : list A) n :
  length l  n 
  take n l = l.
Proof.
  revert n.
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.

Lemma take_take (l : list A) n m :
  take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; simpl; f_equal; auto. Qed.
Lemma take_idempotent (l : list A) n :
  take n (take n l) = take n l.
Proof. by rewrite take_take, Min.min_idempotent. Qed.

Lemma take_length (l : list A) n :
  length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; simpl; f_equal; done. Qed.
Lemma take_length_alt (l : list A) n :
  n  length l 
  length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.

Lemma lookup_take (l : list A) n i :
  i < n  take n l !! i = l !! i.
Proof.
  revert n i. induction l; intros [|n] i ?; trivial.
  * auto with lia.
  * destruct i; simpl; auto with arith.
Qed.
Lemma lookup_take_ge (l : list A) n i :
  n  i  take n l !! i = None.
Proof.
  revert n i.
  induction l; intros [|?] [|?] ?; simpl; auto with lia.
Qed.
Lemma take_alter (f : A  A) l n i :
  n  i  take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  * by rewrite !lookup_take_ge.
  * by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert (l : list A) n i x :
  n  i  take n (<[i:=x]>l) = take n l.
Proof take_alter _ _ _ _.

Lemma drop_nil n :
  drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_app (l k : list A) :
  drop (length l) (l ++ k) = k.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma drop_app_alt (l k : list A) n :
  n = length l 
  drop n (l ++ k) = k.
Proof. intros Hn. by rewrite Hn, drop_app. Qed.
Lemma drop_length (l : list A) n :
  length (drop n l) = length l - n.
Proof.
  revert n. by induction l; intros [|i]; simpl; f_equal.
Qed.
Lemma drop_all (l : list A) :
  drop (length l) l = [].
Proof. induction l; simpl; auto. Qed.
Lemma drop_all_alt (l : list A) n :
  n = length l 
  drop n l = [].
Proof. intros. subst. by rewrite drop_all. Qed.

Lemma lookup_drop (l : list A) n i :
  drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter (f : A  A) l n i  :
  i < n  drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert (l : list A) n i x :
  i < n  drop n (<[i:=x]>l) = drop n l.
Proof drop_alter _ _ _ _.

678
679
680
681
682
Lemma replicate_length n (x : A) : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n (x : A) i :
  i < n 
  replicate n x !! i = Some x.
683
Proof.
684
685
686
687
688
689
690
691
692
  revert i.
  induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma lookup_replicate_inv n (x y : A) i :
  replicate n x !! i = Some y  y = x  i < n.
Proof.
  revert i.
  induction n; intros [|?]; naive_solver auto with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
Lemma replicate_plus n m (x : A) :
  replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; simpl; f_equal; auto. Qed.

Lemma take_replicate n m (x : A) :
  take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma take_replicate_plus n m (x : A) :
  take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m (x : A) :
  drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma drop_replicate_plus n m (x : A) :
  drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.

Lemma resize_spec (l : list A) n x :
  resize n x l = take n l ++ replicate (n - length l) x.
Proof.
  revert n.
  induction l; intros [|?]; simpl; f_equal; auto.
Qed.
Lemma resize_0 (l : list A) x :
  resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n (x : A) :
  resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. simpl. f_equal. lia. Qed.
Lemma resize_ge (l : list A) n x :
  length l  n 
  resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le (l : list A) n x :
  n  length l 
  resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (NPeano.Nat.sub_0_le _ _)) by done.
731
  simpl. by rewrite (right_id [] (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
Qed.

Lemma resize_all (l : list A) x :
  resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt (l : list A) n x :
  n = length l 
  resize n x l = l.
Proof. intros. subst. by rewrite resize_all. Qed.

Lemma resize_plus (l : list A) n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
  revert n m.
  induction l; intros [|?] [|?]; simpl; f_equal; auto.
747
  * by rewrite plus_0_r, (right_id [] (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
  * by rewrite replicate_plus.
Qed.
Lemma resize_plus_eq (l : list A) n m x :
  length l = n 
  resize (n + m) x l = l ++ replicate m x.
Proof.
  intros. subst.
  by rewrite resize_plus, resize_all, drop_all, resize_nil.
Qed.

Lemma resize_app_le (l1 l2 : list A) n x :
  n  length l1 
  resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros.
  by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app_ge (l1 l2 : list A) n x :
  length l1  n 
  resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
  intros.
770
  rewrite !resize_spec, take_app_ge, (associative (++)) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
  do 2 f_equal. rewrite app_length. lia.
Qed.

Lemma resize_length (l : list A) n x : length (resize n x l) = n.
Proof.
  rewrite resize_spec, app_length, replicate_length, take_length. lia.
Qed.
Lemma resize_replicate (x : A) n m :
  resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; simpl; f_equal; auto. Qed.

Lemma resize_resize (l : list A) n m x :
  n  m 
  resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite !resize_nil, resize_replicate.
  * intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_idempotent (l : list A) n x :
  resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.

Lemma resize_take_le (l : list A) n m x :
  n  m 
  resize n x (take m l) = resize n x l.
Proof.
  revert n m.
  induction l; intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_take_eq (l : list A) n x :
  resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.

Lemma take_resize (l : list A) n m x :
  take n (resize m x l) = resize (min n m) x l.
Proof.
  revert n m.
  induction l; intros [|?] [|?]; simpl; f_equal; auto using take_replicate.
Qed.
Lemma take_resize_le (l : list A) n m x :
  n  m 
  take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_eq (l : list A) n x :
  take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_length_resize (l : list A) n x :
  length l  n 
  take (length l) (resize n x l) = l.
Proof. intros. by rewrite take_resize_le, resize_all. Qed.
Lemma take_length_resize_alt (l : list A) n m x :
  m = length l 
  m  n 
  take m (resize n x l) = l.
Proof. intros. subst. by apply take_length_resize. Qed.
Lemma take_resize_plus (l : list A) n m x :
  take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.

Lemma drop_resize_le (l : list A) n m x :
  n  m 
  drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  * intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_plus (l : list A) n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
842

843
844
Section Forall_Exists.
  Context (P : A  Prop).
845

846
847
848
849
850
851
852
853
854
855
  Lemma Forall_forall l :
    Forall P l   x, x  l  P x.
  Proof.
    split.
    * induction 1; inversion 1; subst; auto.
    * intros Hin. induction l; constructor.
      + apply Hin. constructor.
      + apply IHl. intros ??. apply Hin. by constructor.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
856
857
858
859
860
861
862
863
  Lemma Forall_nil : Forall P []  True.
  Proof. done. Qed.
  Lemma Forall_cons_1 x l : Forall P (x :: l)  P x  Forall P l.
  Proof. by inversion 1. Qed.
  Lemma Forall_cons x l : Forall P (x :: l)  P x  Forall P l.
  Proof. split. by inversion 1. intros [??]. by constructor. Qed.
  Lemma Forall_singleton x : Forall P [x]  P x.
  Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
864
865
866
867
868
869
870
871
872
873
874
  Lemma Forall_app l1 l2 : Forall P (l1 ++ l2)  Forall P l1  Forall P l2.
  Proof.
    split.
    * induction l1; inversion 1; intuition.
    * intros [H ?]. induction H; simpl; intuition.
  Qed.
  Lemma Forall_true l : ( x, P x)  Forall P l.
  Proof. induction l; auto. Qed.
  Lemma Forall_impl l (Q : A  Prop) :
    Forall P l  ( x, P x  Q x)  Forall Q l.
  Proof. intros H ?. induction H; auto. Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
875

876
877
878
879
880
881
882
883
884
885
886
887
  Lemma Forall_delete l i : Forall P l  Forall P (delete i l).
  Proof.
    intros H. revert i.
    by induction H; intros [|i]; try constructor.
  Qed.
  Lemma Forall_lookup l :
    Forall P l   i x, l !! i = Some x  P x.
  Proof.
    rewrite Forall_forall.
    setoid_rewrite elem_of_list_lookup.
    naive_solver.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
888
889
890
  Lemma Forall_lookup_1 l i x :
    Forall P l  l !! i = Some x  P x.
  Proof. rewrite Forall_lookup. eauto. Qed.
891
892
893
894
895
896
897
898
  Lemma Forall_alter f l i :
    Forall P l 
    ( x, l !! i = Some x  P x  P (f x)) 
    Forall P (alter f i l).
  Proof.
    intros Hl. revert i.
    induction Hl; simpl; intros [|i]; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
899

Robbert Krebbers's avatar
Robbert Krebbers committed
900
901
902
903
904
905
906
  Lemma Forall_replicate n x :
    P x  Forall P (replicate n x).
  Proof. induction n; simpl; constructor; auto. Qed.
  Lemma Forall_replicate_eq n (x : A) :
    Forall (=x) (replicate n x).
  Proof. induction n; simpl; constructor; auto. Qed.

907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
  Lemma Exists_exists l :
    Exists P l   x, x  l  P x.
  Proof.
    split.
    * induction 1 as [x|y ?? IH].
      + exists x. split. constructor. done.
      + destruct IH as [x [??]]. exists x. split. by constructor. done. 
    * intros [x [Hin ?]]. induction l.
      + by destruct (not_elem_of_nil x).
      + inversion Hin; subst. by left. right; auto.
  Qed.
  Lemma Exists_inv x l : Exists P (x :: l)  P x  Exists P l.
  Proof. inversion 1; intuition trivial. Qed.
  Lemma Exists_app l1 l2 : Exists P (l1 ++ l2)  Exists P l1  Exists P l2.
  Proof.
    split.
    * induction l1; inversion 1; intuition.
    * intros [H|H].
      + induction H; simpl; intuition.
      + induction l1; simpl; intuition. 
  Qed.
928

929
930
931
932
  Lemma Exists_not_Forall l : Exists (not  P) l  ¬Forall P l.
  Proof. induction 1; inversion_clear 1; contradiction. Qed.
  Lemma Forall_not_Exists l : Forall (not  P) l  ¬Exists P l.
  Proof. induction 1; inversion_clear 1; contradiction. Qed.
933

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
  Context {dec :  x, Decision (P x)}.

  Fixpoint Forall_Exists_dec l : {Forall P l} + {Exists (not  P) l}.
  Proof.
   refine (
    match l with
    | [] => left _
    | x :: l => cast_if_and (dec x) (Forall_Exists_dec l)
    end); clear Forall_Exists_dec; abstract intuition.
  Defined.

  Lemma not_Forall_Exists l : ¬Forall P l  Exists (not  P) l.
  Proof. intro. destruct (Forall_Exists_dec l); intuition. Qed.

  Global Instance Forall_dec l : Decision (Forall P l) :=
    match Forall_Exists_dec l with
    | left H => left H
    | right H => right (Exists_not_Forall _ H)
    end.

  Fixpoint Exists_Forall_dec l : {Exists P l} + {Forall (not  P) l}.
  Proof.
   refine (
    match l with
    | [] => right _
    | x :: l => cast_if_or (dec x) (Exists_Forall_dec l)
    end); clear Exists_Forall_dec; abstract intuition.
  Defined.

  Lemma not_Exists_Forall l : ¬Exists P l  Forall (not  P) l.
  Proof. intro. destruct (Exists_Forall_dec l); intuition. Qed.

  Global Instance Exists_dec l : Decision (Exists P l) :=
    match Exists_Forall_dec l with
    | left H => left H
    | right H => right (Forall_not_Exists _ H)
    end.
971
End Forall_Exists.
Robbert Krebbers's avatar
Robbert Krebbers committed
972
End general_properties.
973
974

Section Forall2.
Robbert Krebbers's avatar
Robbert Krebbers committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
  Context {A B} (P : A  B  Prop).

  Lemma Forall2_nil_inv_l k :
    Forall2 P [] k  k = [].
  Proof. by inversion 1. Qed.
  Lemma Forall2_nil_inv_r k :
    Forall2 P k []  k = [].
  Proof. by inversion 1. Qed.

  Lemma Forall2_cons_inv l1 l2 x1 x2 :
    Forall2 P (x1 :: l1) (x2 :: l2)  P x1 x2  Forall2 P l1 l2.
  Proof. by inversion 1. Qed.
  Lemma Forall2_cons_inv_l l1 k x1 :
    Forall2 P (x1 :: l1) k   x2 l2,
      P x1 x2  Forall2 P l1 l2  k = x2 :: l2.
  Proof. inversion 1; subst; eauto. Qed.
  Lemma Forall2_cons_inv_r k l2 x2 :
    Forall2 P k (x2 :: l2)   x1 l1,
      P x1 x2  Forall2 P l1 l2  k = x1 :: l1.
  Proof. inversion 1; subst; eauto. Qed.
  Lemma Forall2_cons_nil_inv l1 x1 :
    Forall2 P (x1 :: l1) []  False.
  Proof. by inversion 1. Qed.
  Lemma Forall2_nil_cons_inv l2 x2 :
    Forall2 P [] (x2 :: l2)  False.
  Proof. by inversion 1. Qed.

  Lemma Forall2_flip l1 l2 :
    Forall2 P l1 l2  Forall2 (flip P) l2 l1.
  Proof. split; induction 1; constructor; auto. Qed.
1005
1006
1007
1008

  Lemma Forall2_length l1 l2 :
    Forall2 P l1 l2  length l1 = length l2.
  Proof. induction 1; simpl; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1009

1010
1011
  Lemma Forall2_impl (Q : A  B  Prop) l1 l2 :
    Forall2 P l1 l2  ( x y, P x y  Q x y)  Forall2 Q l1 l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
1012
  Proof. intros H ?. induction H; auto. Defined.
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

  Lemma Forall2_unique l k1 k2 :
    Forall2 P l k1 
    Forall2 P l k2 
    ( x y1 y2, P x y1  P x y2  y1 = y2) 
    k1 = k2.
  Proof.
    intros H. revert k2.
    induction H; inversion_clear 1; intros; f_equal; eauto.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
1024
  Lemma Forall2_Forall_l (Q : A  Prop) l k :
1025
1026
1027
    Forall2 P l k 
    Forall (λ y,  x, P x y  Q x) k 
    Forall Q l.
Robbert Krebbers's avatar
Robbert Krebbers committed
1028
1029
  Proof. induction 1; inversion_clear 1; eauto. Qed.
  Lemma Forall2_Forall_r (Q : B  Prop) l k :
1030
1031
1032
    Forall2 P l k 
    Forall (λ x,  y, P x y  Q y) l 
    Forall Q k.
Robbert Krebbers's avatar
Robbert Krebbers committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
  Proof. induction 1; inversion_clear 1; eauto. Qed.

  Lemma Forall2_lookup l1 l2 i x y :
    Forall2 P l1 l2 
      l1 !! i = Some x  l2 !! i = Some y  P x y.
  Proof.
    intros H. revert i. induction H.
    * discriminate.
    * intros [|?] ??; simpl in *; simplify_equality; eauto.
  Qed.
  Lemma Forall2_lookup_l l1 l2 i x :
    Forall2 P l1 l2  l1 !! i = Some x   y,
      l2 !! i = Some y  P x y.
  Proof.
    intros H. revert i. induction H.
    * discriminate.
    * intros [|?] ?; simpl in *; simplify_equality; eauto.
  Qed.
  Lemma Forall2_lookup_r l1 l2 i y :
    Forall2 P l1 l2  l2 !! i = Some y   x,
      l1 !! i = Some x  P x y.
  Proof.
    intros H. revert i. induction H.
    * discriminate.
    * intros [|?] ?; simpl in *; simplify_equality; eauto.
  Qed.

  Lemma Forall2_alter_l f l1 l2 i :
    Forall2 P l1 l2 
    ( x1 x2,
      l1 !! i = Some x1  l2 !! i = Some x2  P x1 x2  P (f x1) x2) 
    Forall2 P (alter f i l1) l2.
  Proof.
    intros Hl. revert i.
    induction Hl; simpl; intros [|i]; constructor; auto.
  Qed.
  Lemma Forall2_alter_r f l1 l2 i :
    Forall2 P l1 l2 
    ( x1 x2,
      l1 !! i = Some x1  l2 !! i = Some x2  P x1 x2  P x1 (f x2)) 
    Forall2 P l1 (alter f i l2).
  Proof.
    intros Hl. revert i.
    induction Hl; simpl; intros [|i]; constructor; auto.
  Qed.
  Lemma Forall2_alter f g l1 l2 i :
    Forall2 P l1 l2 
    ( x1 x2,
      l1 !! i = Some x1  l2 !! i = Some x2  P x1 x2  P (f x1) (g x2)) 
    Forall2 P (alter f i l1) (alter g i l2).
  Proof.
    intros Hl. revert i.
    induction Hl; simpl; intros [|i]; constructor; auto.
  Qed.

  Lemma Forall2_replicate_l l n x :
    Forall (P x) l 
    length l = n 
    Forall2 P (replicate n x) l.
  Proof.
    intros Hl. revert n.
    induction Hl; intros [|?] ?; simplify_equality; constructor; auto.
  Qed.
  Lemma Forall2_replicate_r l n x :
    Forall (flip P x) l 
    length l = n 
    Forall2 P l (replicate n x).
  Proof.
    intros Hl. revert n.
    induction Hl; intros [|?] ?; simplify_equality; constructor; auto.
  Qed.
  Lemma Forall2_replicate n x1 x2 :
    P x1 x2 
    Forall2 P (replicate n x1) (replicate n x2).
  Proof. induction n; simpl; constructor; auto. Qed.

  Lemma Forall2_take l1 l2 n :
    Forall2 P l1 l2 
    Forall2 P (take n l1) (take n l2).
  Proof.
    intros Hl1l2. revert n.
    induction Hl1l2; intros [|?]; simpl; auto.
  Qed.
  Lemma Forall2_drop l1 l2 n :
    Forall2 P l1 l2 
    Forall2 P (drop n l1) (drop n l2).
  Proof.
    intros Hl1l2. revert n.
    induction Hl1l2; intros [|?]; simpl; auto.
  Qed.
  Lemma Forall2_resize l1 l2 x1 x2 n :
    P x1 x2 
    Forall2 P l1 l2 
    Forall2 P (resize n x1 l1) (resize n x2 l2).
  Proof.
    intros. rewrite !resize_spec, (Forall2_length l1 l2) by done.
    auto using Forall2_app, Forall2_take, Forall2_replicate.
  Qed.

  Lemma Forall2_resize_ge_l l1 l2 x1 x2 n m :
    ( x, P x x2) 
    n  m 
    Forall2 P (resize n x1 l1) l2 
    Forall2 P (resize m x1 l1) (resize m x2 l2).
  Proof.
    intros. assert (n = length l2).
    { by rewrite <-(Forall2_length (resize n x1 l1) l2), resize_length. }
    rewrite (le_plus_minus n m) by done. subst.
    rewrite !resize_plus, resize_all, drop_all, resize_nil.
    apply Forall2_app; [done |].
    apply Forall2_replicate_r; [| by rewrite resize_length].
    by apply Forall_true.
  Qed.
  Lemma Forall2_resize_ge_r l1 l2 x1 x2 n m :
    ( x3, P x1 x3) 
    n  m 
    Forall2 P l1 (resize n x2 l2) 
    Forall2 P (resize m x1 l1) (resize m x2 l2).
  Proof.
    intros. assert (n = length l1).
    { by rewrite (Forall2_length l1 (resize n x2 l2)), resize_length. }
    rewrite (le_plus_minus n m) by done. subst.
    rewrite !resize_plus, resize_all, drop_all, resize_nil.
    apply Forall2_app; [done |].
    apply Forall2_replicate_l; [| by rewrite resize_length].
    by apply Forall_true.
  Qed.

  Lemma Forall2_trans {C} (Q : B  C  Prop) (R : A  C  Prop) l1 l2 l3 :
    ( x1 x2 x3, P x1 x2  Q x2 x3  R x1 x3) 
    Forall2 P l1 l2 
    Forall2 Q l2 l3 
    Forall2 R l1 l3.
  Proof.
    intros ? Hl1l2. revert l3.
    induction Hl1l2; inversion_clear 1; eauto.
  Qed.

  Lemma Forall2_Forall (Q : A  A  Prop) l :
    Forall (λ x, Q x x) l  Forall2 Q l l.
  Proof. induction 1; constructor; auto. Qed.

  Global Instance Forall2_dec `{ x1 x2, Decision (P x1 x2)} :
     l1 l2, Decision (Forall2 P l1 l2).
  Proof.
   refine (
    fix go l1 l2 : Decision (Forall2 P l1 l2) :=
    match l1, l2 with
    | [], [] => left _
    | x1 :: l1, x2 :: l2 => cast_if_and (decide (P x1 x2)) (go l1 l2)
    | _, _ => right _
    end); clear go; abstract first [by constructor | by inversion 1].
  Defined.
1186
1187
1188
End Forall2.

Section Forall2_order.
Robbert Krebbers's avatar
Robbert Krebbers committed
1189
  Context  {A} (R : relation A).
1190
1191
1192
1193
1194

  Global Instance: PreOrder R  PreOrder (Forall2 R).
  Proof.
    split.
    * intros l. induction l; by constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
1195
    * intros ???. apply Forall2_trans. apply transitivity.
1196
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1197
1198
  Global Instance: AntiSymmetric R  AntiSymmetric (Forall2 R).
  Proof. induction 2; inversion_clear 1; f_equal; auto. Qed.
1199
End Forall2_order.
1200

1201
1202
1203
1204
1205
1206
1207
1208
1209
Ltac decompose_elem_of_list := repeat
  match goal with
  | H : ?x  [] |- _ => by destruct (not_elem_of_nil x)
  | H : _  _ :: _ |- _ => apply elem_of_cons in H; destruct H
  | H : _  _ ++ _ |- _ => apply elem_of_app in H; destruct H
  end.
Ltac decompose_Forall := repeat
  match goal with
  | H : Forall _ [] |- _ => clear H
Robbert Krebbers's avatar
Robbert Krebbers committed
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
  | H : Forall _ (_ :: _) |- _ => rewrite Forall_cons in H; destruct H
  | H : Forall _ (_ ++ _) |- _ => rewrite Forall_app in H; destruct H
  | H :<