fin_maps.v 71.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9 10
(* FIXME: This file needs a 'Proof Using' hint, but the default we use
   everywhere makes for lots of extra ssumptions. *)
11

12 13
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
14 15 16 17 18
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
19

Robbert Krebbers's avatar
Robbert Krebbers committed
20 21
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
22
prove well founded recursion on finite maps. *)
23

24 25 26
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
27

28
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
29

30 31
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
32
    EqDecision K} := {
33 34
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
35 36 37 38
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
39
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
40
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
41 42
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
43
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
44
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
45
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
46 47
}.

48 49 50
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
51 52
significant performance loss to make including them in the finite map interface
worthwhile. *)
53 54 55 56 57 58 59 60 61 62
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
63
  fold_right (λ p, <[p.1:=p.2]>) .
64 65
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
66
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
67

68 69 70 71 72 73
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
74

75
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
76
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
77

78 79
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
80
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  λ m,  i x, m !! i = Some x  P i x.
82
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
83 84
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
85
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
87
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
88 89 90 91 92
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
93
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
94
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
95 96 97 98 99

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
100
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
101 102 103
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

104 105
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
106
Instance map_difference `{Merge M} {A} : Difference (M A) :=
107
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
108

109 110
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
111 112
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
113 114
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

115 116 117 118
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
119 120
(** ** Setoids *)
Section setoid.
121 122 123 124 125 126 127
  Context `{Equiv A}.
  
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.

  Context `{!Equivalence (() : relation A)}.
128
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
129 130
  Proof.
    split.
131 132
    - by intros m i.
    - by intros m1 m2 ? i.
133
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
134
  Qed.
135 136
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
137 138
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
139
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
140 141 142 143 144 145
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
146
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
147
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
148 149
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
150
  Proof. by intros ???; apply insert_proper. Qed.
151 152
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
155
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158 159
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
160
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
161
    (() ==> () ==> ())%signature f g 
162
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
163 164 165 166
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
167
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
168 169 170
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
171
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
172 173
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
174 175
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
  Qed.
177 178 179 180 181
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
182 183 184 185 186
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
187 188 189
End setoid.

(** ** General properties *)
190 191 192 193 194
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
196 197
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
198 199
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
  split; [intros m i; by destruct (m !! i); simpl|].
201
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
202
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
203
    done || etrans; eauto.
204
Qed.
205
Global Instance: PartialOrder (() : relation (M A)).
206
Proof.
207 208 209
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
210 211 212
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
213
Proof. rewrite !map_subseteq_spec. auto. Qed.
214 215 216 217 218 219
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
220 221
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
222 223
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
224 225
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
226 227 228 229 230 231 232 233 234
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
235 236 237
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
238 239
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
240 241

(** ** Properties of the [partial_alter] operation *)
242 243 244
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
245 246
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
247 248
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
249 250
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
251 252
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
253
Qed.
254
Lemma partial_alter_commute {A} f g (m : M A) i j :
255
  i  j  partial_alter f i (partial_alter g j m) =
256 257
    partial_alter g j (partial_alter f i m).
Proof.
258 259 260 261
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
262
  - by rewrite lookup_partial_alter,
263
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
264
  - by rewrite !lookup_partial_alter_ne by congruence.
265 266 267 268
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
269 270
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
271
Qed.
272
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
273
Proof. by apply partial_alter_self_alt. Qed.
274
Lemma partial_alter_subseteq {A} f (m : M A) i :
275
  m !! i = None  m  partial_alter f i m.
276 277 278 279
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
280
Lemma partial_alter_subset {A} f (m : M A) i :
281
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
282
Proof.
283 284 285 286
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
287 288 289
Qed.

(** ** Properties of the [alter] operation *)
290 291
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
292
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
293
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
294
Proof. unfold alter. apply lookup_partial_alter. Qed.
295
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
296
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
297 298 299 300 301 302 303 304 305
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
306 307 308 309
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
310
  destruct (decide (i = j)) as [->|?].
311
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
312
  - rewrite lookup_alter_ne by done. naive_solver.
313 314 315 316
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
317 318
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
319
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
320 321
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
322
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
323
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
324
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
325
  by rewrite lookup_alter_ne by done.
326 327 328 329 330 331 332 333 334 335 336
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
337
  - destruct (decide (i = j)) as [->|?];
338
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
339
  - intros [??]. by rewrite lookup_delete_ne.
340
Qed.
341 342 343
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
344 345 346
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
347 348
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
349 350 351
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
352
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
353 354 355 356 357 358 359
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
360
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
361
Proof.
362 363
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
364 365 366 367 368 369 370 371 372 373
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
374 375
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
376
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
377 378 379
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
380
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
381
  m1  m2  delete i m1  delete i m2.
382 383 384 385
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
386
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
387
Proof.
388 389 390
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
391
Qed.
392
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
393 394 395 396 397
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
398
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
399
Proof. rewrite lookup_insert. congruence. Qed.
400
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
401
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
402 403
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
404 405 406 407 408 409 410
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
411
  - destruct (decide (i = j)) as [->|?];
412
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
413
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
414
Qed.
415 416 417
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
418 419 420
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
421 422 423
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
424
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
426 427 428 429 430 431 432 433
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
434 435
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
436
Qed.
437
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
438
Proof. apply partial_alter_subseteq. Qed.
439
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
440 441
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
442
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
443
Proof.
444 445 446
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
447 448
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
449
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
450
Proof.
451 452 453 454
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
455 456
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
457
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
458
Proof.
459 460
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
461 462
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
463 464
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
465
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
466
Proof.
467 468 469
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
470 471
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
472
  m1 !! i = None  <[i:=x]> m1  m2 
473 474
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
475
  intros Hi Hm1m2. exists (delete i m2). split_and?.
476 477
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
478 479
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
480
Qed.
481
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
482
Proof. done. Qed.
483 484 485 486
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
487 488 489

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
490
  {[i := x]} !! j = Some y  i = j  x = y.
491
Proof.
492
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
493
Qed.
494
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
495
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
496
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
497
Proof. by rewrite lookup_singleton_Some. Qed.
498
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
499
Proof. by rewrite lookup_singleton_None. Qed.
500
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
501 502 503 504
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
505
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
506
Proof.
507
  unfold singletonM, map_singleton, insert, map_insert.
508 509
  by rewrite <-partial_alter_compose.
Qed.
510
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
511
Proof.
512
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
513 514
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
515 516
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
517
  i  j  alter f i {[j := x]} = {[j := x]}.
518
Proof.
519 520
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
521
Qed.
522 523
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
524

525 526 527 528 529
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
530 531 532
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
533 534
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
535
Qed.
536 537 538 539 540 541
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
542 543 544 545
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
546 547
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
548
Qed.
549
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
550 551 552
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
553
Lemma omap_singleton {A B} (f : A  option B) i x y :
554
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
555
Proof.
556 557
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
558
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
559 560 561 562 563
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
564
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
565 566 567 568 569
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
570 571 572 573 574 575
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
576 577 578 579 580 581
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
582

583 584
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
585
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
586
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
587
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
588
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
589 590 591 592 593
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
594
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
595
  destruct (decide (i = j)) as [->|].
596 597
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
598
Qed.
599
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
600
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
601
Proof.
602 603
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
604
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
605
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
606 607
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
608
  map_of_list l !! i = Some x  (i,x)  l.
609
Proof.
610 611 612
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
613 614
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
615
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
616
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
617
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
618
  i  l.*1  map_of_list l !! i = None.
619
Proof.
620 621
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
622 623
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
624
  map_of_list l !! i = None  i  l.*1.
625
Proof.
626
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
627
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
628 629
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
630 631
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
632
  i  l.*1  map_of_list l !! i = None.
633
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
634
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
635
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
636 637 638 639 640
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
641
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
642
Proof.
643
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
644 645
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
646
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
647 648 649
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
650
    by auto using NoDup_fst_map_to_list.
651 652
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
653
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
654
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
655
Lemma map_to_list_inj {A} (m1 m2 : M A) :
656
  map_to_list m1  map_to_list m2  m1 = m2.
657
Proof.
658
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
659
  auto using map_of_list_proper, NoDup_fst_map_to_list.
660
Qed.
661 662 663 664 665 666
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
667 668 669 670 671 672 673 674 675 676 677 678 679

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_of_list_fmap {A B} (f : A  B) l :
  map_of_list (prod_map id f <$> l) = f <$> map_of_list l.
Proof.
  induction l as [|[i x] l IH]; csimpl; rewrite ?fmap_empty; auto.
  rewrite <-map_of_list_cons; simpl. by rewrite IH, <-fmap_insert.
Qed.

680
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
681 682 683 684 685
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
686
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
687
Proof.
688
  intros. apply map_of_list_inj; csimpl.
689 690
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
691
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
692
    rewrite elem_of_map_to_list in Hlookup. congruence.
693
  - by rewrite !map_of_to_list.
694
Qed.
695 696 697 698 699 700
Lemma map_to_list_singleton {A} i (x : A) : map_to_list {[i:=x]} = [(i,x)].
Proof.
  apply Permutation_singleton. unfold singletonM, map_singleton.
  by rewrite map_to_list_insert, map_to_list_empty by auto using lookup_empty.
Qed.

701 702 703 704 705 706
Lemma map_to_list_contains {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 `contains` map_to_list m2.
Proof.
  intros; apply NoDup_contains; auto using NoDup_map_to_list.
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
707 708 709 710 711 712 713 714 715 716
Lemma map_to_list_fmap {A B} (f : A  B) m :
  map_to_list (f <$> m)  prod_map id f <$> map_to_list m.
Proof.
  assert (NoDup ((prod_map id f <$> map_to_list m).*1)).
  { erewrite <-list_fmap_compose, (list_fmap_ext _ fst) by done.
    apply NoDup_fst_map_to_list. }
  rewrite <-(map_of_to_list m) at 1.
  by rewrite <-map_of_list_fmap, map_to_of_list.
Qed.

717
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
718
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
719
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
720
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
721 722 723 724 725
Lemma map_to_list_empty' {A} (m : M A) : map_to_list m = []  m = .
Proof.
  split. apply map_to_list_empty_inv. intros ->. apply map_to_list_empty.
Qed.