list.v 88.8 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
5

6
Require Import Permutation.
7
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
11
12
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
13
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
14

Robbert Krebbers's avatar
Robbert Krebbers committed
15
16
17
Notation Forall_nil_2 := Forall_nil.
Notation Forall_cons_2 := Forall_cons.

18
19
20
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
21
Notation take_drop := firstn_skipn.
22
23
24
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
25
26
27
28
29
30
31
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

32
(** * General definitions *)
Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
(** Looking up, updating, and deleting elements of a list. *)
Instance list_lookup {A} : Lookup nat A (list A) :=
35
  fix go (i : nat) (l : list A) {struct l} : option A :=
36
37
38
39
40
  match l with
  | [] => None
  | x :: l =>
    match i with
    | 0 => Some x
41
    | S i => @lookup _ _ _ go i l
42
43
    end
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
44
Instance list_alter {A} (f : A  A) : AlterD nat A (list A) f :=
45
  fix go (i : nat) (l : list A) {struct l} :=
46
47
48
49
50
  match l with
  | [] => []
  | x :: l =>
    match i with
    | 0 => f x :: l
51
    | S i => x :: @alter _ _ _ f go i l
52
53
    end
  end.
54
55
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
56
57
58
59
60
  match l with
  | [] => []
  | x :: l =>
    match i with
    | 0 => l
61
    | S i => x :: @delete _ _ go i l
62
    end
63
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
64
Instance list_insert {A} : Insert nat A (list A) := λ i x,
65
  alter (λ _, x) i.
66

Robbert Krebbers's avatar
Robbert Krebbers committed
67
(** The function [option_list] converts an element of the option type into
68
the empty list or a singleton list. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l :=
  match l with
  | [] => []
  | x :: l =>
     if decide (P x)
     then x :: @filter _ _ (@go) _ _ l
     else @filter _ _ (@go) _ _ l
  end.

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with
  | 0 => []
  | S n => x :: replicate n x
  end.

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l =>
    match n with
    | 0 => []
    | S n => x :: resize n y l
    end
  end.
Arguments resize {_} !_ _ !_.

108
109
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
110
111
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
Robbert Krebbers's avatar
Robbert Krebbers committed
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.

  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
       if decide_rel (=) x1 x2
       then snd_map (x1 ::) (go l1 l2)
       else (x1 :: l1, x2 :: l2, [])
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.

  Definition strip_prefix (l1 l2 : list A) := snd $ fst $ max_prefix_of l1 l2.
  Definition strip_suffix (l1 l2 : list A) := snd $ fst $ max_suffix_of l1 l2.
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
134

135
136
137
138
139
140
141
142
143
144
145
(** A list [l1] is a sub list of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_cons x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
  | sublist_cons_skip x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).

(** * Tactics on lists *)
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
146
147
148
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
  repeat (simpl in H || rewrite app_length in H);
149
  exfalso; lia.
150
Tactic Notation "discriminate_list_equality" :=
151
  solve [repeat_on_hyps (fun H => discriminate_list_equality H)].
152

153
154
155
156
157
158
159
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
Lemma cons_inv {A} (l1 l2 : list A) x1 x2 :
  x1 :: l1 = x2 :: l2  x1 = x2  l1 = l2.
Proof. by injection 1. Qed.

160
161
Ltac simplify_list_equality := repeat
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
162
163
164
  | H : _ :: _ = _ :: _ |- _ =>
     apply cons_inv in H; destruct H
     (* to circumvent bug #2939 in some situations *)
165
  | H : _ ++ _ = _ ++ _ |- _ => first
Robbert Krebbers's avatar
Robbert Krebbers committed
166
167
     [ apply app_inj_tail in H; destruct H
     | apply app_inv_head in H
168
     | apply app_inv_tail in H ]
Robbert Krebbers's avatar
Robbert Krebbers committed
169
170
171
  | H : [?x] !! ?i = Some ?y |- _ =>
     destruct i; [change (Some x = Some y) in H|discriminate]
  | _ => progress simplify_equality
172
173
  | H : _ |- _ => discriminate_list_equality H
  end.
174

175
176
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
177
178
Context {A : Type}.

Robbert Krebbers's avatar
Robbert Krebbers committed
179
180
181
182
Global Instance:  x : A, Injective (=) (=) (x ::).
Proof. by injection 1. Qed.
Global Instance:  l : list A, Injective (=) (=) (:: l).
Proof. by injection 1. Qed.
183
184
185
186
Global Instance:  k : list A, Injective (=) (=) (k ++).
Proof. intros ???. apply app_inv_head. Qed.
Global Instance:  k : list A, Injective (=) (=) (++ k).
Proof. intros ???. apply app_inv_tail. Qed.
187
188
189
190
191
192
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
193

Robbert Krebbers's avatar
Robbert Krebbers committed
194
195
196
197
198
Lemma app_inj (l1 k1 l2 k2 : list A) :
  length l1 = length k1 
  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.

199
Lemma list_eq (l1 l2 : list A) : ( i, l1 !! i = l2 !! i)%C  l1 = l2.
200
201
Proof.
  revert l2. induction l1; intros [|??] H.
202
  * done.
203
204
  * discriminate (H 0).
  * discriminate (H 0).
205
206
  * f_equal; [by injection (H 0) |].
    apply IHl1. intro. apply (H (S _)).
207
Qed.
208
209
Lemma list_eq_nil (l : list A) : ( i, l !! i = None)  l = nil.
Proof. intros. by apply list_eq. Qed.
210

211
212
Global Instance list_eq_dec {dec :  x y : A, Decision (x = y)} :  l k,
  Decision (l = k) := list_eq_dec dec.
213
214
Definition list_singleton_dec (l : list A) :
  { x | l = [x] } + { length l  1 }.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
217
218
219
220
221
Proof.
 by refine (
  match l with
  | [x] => inleft (x  _)
  | _ => inright _
  end).
Defined.
222

223
224
225
Global Instance: Proper (Permutation ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.

226
227
228
229
230
Lemma nil_or_length_pos (l : list A) : l = []  length l  0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length (l : list A) : length l = 0  l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
231
Proof. by destruct i. Qed.
232
Lemma lookup_tail (l : list A) i : tail l !! i = l !! S i.
233
Proof. by destruct l. Qed.
234

235
236
Lemma lookup_lt_length (l : list A) i :
  is_Some (l !! i)  i < length l.
237
Proof.
238
239
240
241
242
  revert i. induction l.
  * split; by inversion 1.
  * intros [|?]; simpl.
    + split; eauto with arith.
    + by rewrite <-NPeano.Nat.succ_lt_mono.
243
Qed.
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
Lemma lookup_lt_length_1 (l : list A) i :
  is_Some (l !! i)  i < length l.
Proof. apply lookup_lt_length. Qed.
Lemma lookup_lt_length_alt (l : list A) i x :
  l !! i = Some x  i < length l.
Proof. intros Hl. by rewrite <-lookup_lt_length, Hl. Qed.
Lemma lookup_lt_length_2 (l : list A) i :
  i < length l  is_Some (l !! i).
Proof. apply lookup_lt_length. Qed.

Lemma lookup_ge_length (l : list A) i :
  l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_length. lia. Qed.
Lemma lookup_ge_length_1 (l : list A) i :
  l !! i = None  length l  i.
Proof. by rewrite lookup_ge_length. Qed.
Lemma lookup_ge_length_2 (l : list A) i :
  length l  i  l !! i = None.
Proof. by rewrite lookup_ge_length. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
264
265
266
267
268
269
270
271
272
273
274
275
276
Lemma list_eq_length_eq (l1 l2 : list A) :
  length l2 = length l1 
  ( i x y, l1 !! i = Some x  l2 !! i = Some y  x = y) 
  l1 = l2.
Proof.
  intros Hlength Hlookup. apply list_eq. intros i.
  destruct (l2 !! i) as [x|] eqn:E.
  * feed inversion (lookup_lt_length_2 l1 i) as [y].
    { pose proof (lookup_lt_length_alt l2 i x E). lia. }
    f_equal. eauto.
  * rewrite lookup_ge_length in E |- *. lia.
Qed.

277
278
279
280
281
282
283
284
285
286
287
Lemma lookup_app_l (l1 l2 : list A) i :
  i < length l1 
  (l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_l_Some (l1 l2 : list A) i x :
  l1 !! i = Some x 
  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_length_alt. Qed.

Lemma lookup_app_r (l1 l2 : list A) i :
  (l1 ++ l2) !! (length l1 + i) = l2 !! i.
288
Proof.
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
  revert i.
  induction l1; intros [|i]; simpl in *; simplify_equality; auto.
Qed.
Lemma lookup_app_r_alt (l1 l2 : list A) i :
  length l1  i 
  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply lookup_app_r.
Qed.
Lemma lookup_app_r_Some (l1 l2 : list A) i x :
  l2 !! i = Some x 
  (l1 ++ l2) !! (length l1 + i) = Some x.
Proof. by rewrite lookup_app_r. Qed.
Lemma lookup_app_r_Some_alt (l1 l2 : list A) i x :
  length l1  i 
  l2 !! (i - length l1) = Some x 
  (l1 ++ l2) !! i = Some x.
Proof. intro. by rewrite lookup_app_r_alt. Qed.

Lemma lookup_app_inv (l1 l2 : list A) i x :
  (l1 ++ l2) !! i = Some x 
  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
Proof.
  revert i.
  induction l1; intros [|i] ?; simpl in *; simplify_equality; auto.
315
316
Qed.

317
Lemma list_lookup_middle (l1 l2 : list A) (x : A) :
318
  (l1 ++ x :: l2) !! length l1 = Some x.
319
Proof. by induction l1; simpl. Qed.
320

321
322
323
324
325
326
327
328
329
Lemma alter_length (f : A  A) l i :
  length (alter f i l) = length l.
Proof. revert i. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma insert_length (l : list A) i x :
  length (<[i:=x]>l) = length l.
Proof. apply alter_length. Qed.

Lemma list_lookup_alter (f : A  A) l i :
  alter f i l !! i = f <$> l !! i.
330
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
331
Lemma list_lookup_alter_ne (f : A  A) l i j :
332
333
334
335
336
  i  j  alter f i l !! j = l !! j.
Proof.
  revert i j. induction l; [done|].
  intros [|i] [|j] ?; try done. apply (IHl i). congruence.
Qed.
337
338
339
340
341
342
343
344
345
346
347
348
Lemma list_lookup_insert (l : list A) i x :
  i < length l 
  <[i:=x]>l !! i = Some x.
Proof.
  intros Hi. unfold insert, list_insert.
  rewrite list_lookup_alter.
  by feed inversion (lookup_lt_length_2 l i).
Qed.
Lemma list_lookup_insert_ne (l : list A) i j x :
  i  j  <[i:=x]>l !! j = l !! j.
Proof. apply list_lookup_alter_ne. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
349
350
351
352
353
354
355
356
357
358
359
Lemma list_lookup_other (l : list A) i x :
  length l  1 
  l !! i = Some x 
   j y, j  i  l !! j = Some y.
Proof.
  intros Hl Hi.
  destruct i; destruct l as [|x0 [|x1 l]]; simpl in *; simplify_equality.
  * by exists 1 x1.
  * by exists 0 x0.
Qed.

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
Lemma alter_app_l (f : A  A) (l1 l2 : list A) i :
  i < length l1 
  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof.
  revert i.
  induction l1; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma alter_app_r (f : A  A) (l1 l2 : list A) i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof.
  revert i.
  induction l1; intros [|?]; simpl in *; f_equal; auto.
Qed.
Lemma alter_app_r_alt (f : A  A) (l1 l2 : list A) i :
  length l1  i 
  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
Lemma insert_app_l (l1 l2 : list A) i x :
  i < length l1 
  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. apply alter_app_l. Qed.
Lemma insert_app_r (l1 l2 : list A) i x :
  <[length l1 + i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. apply alter_app_r. Qed.
Lemma insert_app_r_alt (l1 l2 : list A) i x :
  length l1  i 
  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof. apply alter_app_r_alt. Qed.

Lemma insert_consecutive_length (l : list A) i k :
  length (insert_consecutive i k l) = length l.
Proof. revert i. by induction k; intros; simpl; rewrite ?insert_length. Qed.
396

397
398
399
400
Lemma delete_middle (l1 l2 : list A) x :
  delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
Proof. induction l1; simpl; f_equal; auto. Qed.

401
402
403
404
405
406
Lemma not_elem_of_nil (x : A) : x  [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil (x : A) : x  []  False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv (l : list A) : ( x, x  l)  l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
407
Lemma elem_of_cons (l : list A) x y :
408
  x  y :: l  x = y  x  l.
409
410
Proof.
  split.
411
412
  * inversion 1; subst. by left. by right.
  * intros [?|?]; subst. by left. by right.
413
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
414
415
416
417
Lemma not_elem_of_cons (l : list A) x y :
  x  y :: l  x  y  x  l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app (l1 l2 : list A) x :
418
  x  l1 ++ l2  x  l1  x  l2.
419
Proof.
420
421
422
423
  induction l1.
  * split; [by right|]. intros [Hx|]; [|done].
    by destruct (elem_of_nil x).
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
424
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
426
427
428
Lemma not_elem_of_app (l1 l2 : list A) x :
  x  l1 ++ l2  x  l1  x  l2.
Proof. rewrite elem_of_app. tauto. Qed.

429
430
Lemma elem_of_list_singleton (x y : A) : x  [y]  x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
431

432
433
434
Global Instance elem_of_list_permutation_proper (x : A) :
  Proper (Permutation ==> iff) (x ).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
435

Robbert Krebbers's avatar
Robbert Krebbers committed
436
Lemma elem_of_list_split (l : list A) x :
437
438
439
440
441
442
  x  l   l1 l2, l = l1 ++ x :: l2.
Proof.
  induction 1 as [x l|x y l ? [l1 [l2 ?]]].
  * by eexists [], l.
  * subst. by exists (y :: l1) l2.
Qed.
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)} :
   (x : A) l, Decision (x  l).
Proof.
 intros x. refine (
  fix go l :=
  match l return Decision (x  l) with
  | [] => right (not_elem_of_nil _)
  | y :: l => cast_if_or (decide_rel (=) x y) (go l)
  end); clear go dec; subst; try (by constructor); by inversion 1.
Defined.

Lemma elem_of_list_lookup_1 (l : list A) x :
  x  l   i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH].
  * by exists 0.
  * destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_2 (l : list A) i x :
  l !! i = Some x  x  l.
Proof.
  revert i. induction l; intros [|i] ?;
    simpl; simplify_equality; constructor; eauto.
Qed.
Lemma elem_of_list_lookup (l : list A) x :
  x  l   i, l !! i = Some x.
470
Proof.
471
472
  firstorder eauto using
    elem_of_list_lookup_1, elem_of_list_lookup_2.
473
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
474

475
476
477
478
479
480
481
482
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
Lemma NoDup_cons (x : A) l : NoDup (x :: l)  x  l  NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 (x : A) l : NoDup (x :: l)  x  l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 (x : A) l : NoDup (x :: l)  NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
483
Lemma NoDup_singleton (x : A) : NoDup [x].
484
485
Proof. constructor. apply not_elem_of_nil. constructor. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
486
Lemma NoDup_app (l k : list A) :
487
  NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
Proof.
489
490
491
492
493
494
  induction l; simpl.
  * rewrite NoDup_nil.
    setoid_rewrite elem_of_nil. naive_solver.
  * rewrite !NoDup_cons.
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app.
    naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
495
496
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
497
Global Instance NoDup_proper:
498
499
500
501
502
503
504
505
  Proper (Permutation ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
506

507
508
509
510
511
512
513
514
Lemma NoDup_Permutation (l k : list A) :
  NoDup l  NoDup k  ( x, x  l  x  k)  Permutation l k.
Proof.
  intros Hl. revert k. induction Hl as [|x l Hin ? IH].
  * intros k _ Hk.
    rewrite (elem_of_nil_inv k); [done |].
    intros x. rewrite <-Hk, elem_of_nil. intros [].
  * intros k Hk Hlk.
Robbert Krebbers's avatar
Robbert Krebbers committed
515
    destruct (elem_of_list_split k x) as [l1 [l2 ?]]; subst.
516
517
518
519
520
521
522
523
    { rewrite <-Hlk. by constructor. }
    rewrite <-Permutation_middle, NoDup_cons in Hk.
    destruct Hk as [??].
    apply Permutation_cons_app, IH; [done |].
    intros y. specialize (Hlk y).
    rewrite <-Permutation_middle, !elem_of_cons in Hlk.
    naive_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
524

525
526
Global Instance NoDup_dec {dec :  x y : A, Decision (x = y)} :
     (l : list A), Decision (NoDup l) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
527
528
  fix NoDup_dec l :=
  match l return Decision (NoDup l) with
529
  | [] => left NoDup_nil_2
Robbert Krebbers's avatar
Robbert Krebbers committed
530
  | x :: l =>
531
532
    match decide_rel () x l with
    | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
Robbert Krebbers's avatar
Robbert Krebbers committed
533
534
    | right Hin =>
      match NoDup_dec l with
535
536
      | left H => left (NoDup_cons_2 _ _ Hin H)
      | right H => right (H  NoDup_cons_12 _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
537
538
539
540
      end
    end
  end.

541
542
Section remove_dups.
  Context `{! x y : A, Decision (x = y)}.
543

544
545
546
547
548
549
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
550

551
552
553
554
555
556
  Lemma elem_of_remove_dups l x :
    x  remove_dups l  x  l.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
557

558
559
560
561
562
563
  Lemma remove_dups_nodup l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End remove_dups.
564

Robbert Krebbers's avatar
Robbert Krebbers committed
565
566
567
568
569
570
571
572
573
574
575
576
577
Lemma elem_of_list_filter `{ x : A, Decision (P x)} l x :
  x  filter P l  P x  x  l.
Proof.
  unfold filter. induction l; simpl; repeat case_decide;
     rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
Qed.
Lemma filter_nodup P `{ x : A, Decision (P x)} l :
  NoDup l  NoDup (filter P l).
Proof.
  unfold filter. induction 1; simpl; repeat case_decide;
    rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
Qed.

578
579
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
580
581
Lemma reverse_singleton (x : A) : reverse [x] = [x].
Proof. done. Qed.
582
583
584
585
586
587
588
589
590
591
Lemma reverse_cons (l : list A) x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc (l : list A) x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app (l1 l2 : list A) :
  reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length (l : list A) : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive (l : list A) : reverse (reverse l) = l.
592
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
593

Robbert Krebbers's avatar
Robbert Krebbers committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
Lemma take_nil n :
  take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app (l k : list A) :
  take (length l) (l ++ k) = l.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma take_app_alt (l k : list A) n :
  n = length l 
  take n (l ++ k) = l.
Proof. intros Hn. by rewrite Hn, take_app. Qed.
Lemma take_app_le (l k : list A) n :
  n  length l 
  take n (l ++ k) = take n l.
Proof.
  revert n;
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_app_ge (l k : list A) n :
  length l  n 
  take n (l ++ k) = l ++ take (n - length l) k.
Proof.
  revert n;
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.
Lemma take_ge (l : list A) n :
  length l  n 
  take n l = l.
Proof.
  revert n.
  induction l; intros [|?] ?; simpl in *; f_equal; auto with lia.
Qed.

Lemma take_take (l : list A) n m :
  take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; simpl; f_equal; auto. Qed.
Lemma take_idempotent (l : list A) n :
  take n (take n l) = take n l.
Proof. by rewrite take_take, Min.min_idempotent. Qed.

Lemma take_length (l : list A) n :
  length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; simpl; f_equal; done. Qed.
Lemma take_length_alt (l : list A) n :
  n  length l 
  length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.

Lemma lookup_take (l : list A) n i :
  i < n  take n l !! i = l !! i.
Proof.
  revert n i. induction l; intros [|n] i ?; trivial.
  * auto with lia.
  * destruct i; simpl; auto with arith.
Qed.
Lemma lookup_take_ge (l : list A) n i :
  n  i  take n l !! i = None.
Proof.
  revert n i.
  induction l; intros [|?] [|?] ?; simpl; auto with lia.
Qed.
Lemma take_alter (f : A  A) l n i :
  n  i  take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  * by rewrite !lookup_take_ge.
  * by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert (l : list A) n i x :
  n  i  take n (<[i:=x]>l) = take n l.
Proof take_alter _ _ _ _.

Lemma drop_nil n :
  drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_app (l k : list A) :
  drop (length l) (l ++ k) = k.
Proof. induction l; simpl; f_equal; auto. Qed.
Lemma drop_app_alt (l k : list A) n :
  n = length l 
  drop n (l ++ k) = k.
Proof. intros Hn. by rewrite Hn, drop_app. Qed.
Lemma drop_length (l : list A) n :
  length (drop n l) = length l - n.
Proof.
  revert n. by induction l; intros [|i]; simpl; f_equal.
Qed.
Lemma drop_all (l : list A) :
  drop (length l) l = [].
Proof. induction l; simpl; auto. Qed.
Lemma drop_all_alt (l : list A) n :
  n = length l 
  drop n l = [].
Proof. intros. subst. by rewrite drop_all. Qed.

Lemma lookup_drop (l : list A) n i :
  drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter (f : A  A) l n i  :
  i < n  drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert (l : list A) n i x :
  i < n  drop n (<[i:=x]>l) = drop n l.
Proof drop_alter _ _ _ _.

701
702
703
704
705
Lemma replicate_length n (x : A) : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n (x : A) i :
  i < n 
  replicate n x !! i = Some x.
706
Proof.
707
708
709
710
711
712
713
714
715
  revert i.
  induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma lookup_replicate_inv n (x y : A) i :
  replicate n x !! i = Some y  y = x  i < n.
Proof.
  revert i.
  induction n; intros [|?]; naive_solver auto with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
Lemma replicate_plus n m (x : A) :
  replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; simpl; f_equal; auto. Qed.

Lemma take_replicate n m (x : A) :
  take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma take_replicate_plus n m (x : A) :
  take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m (x : A) :
  drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; simpl; f_equal. Qed.
Lemma drop_replicate_plus n m (x : A) :
  drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.

Lemma resize_spec (l : list A) n x :
  resize n x l = take n l ++ replicate (n - length l) x.
Proof.
  revert n.
  induction l; intros [|?]; simpl; f_equal; auto.
Qed.
Lemma resize_0 (l : list A) x :
  resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n (x : A) :
  resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. simpl. f_equal. lia. Qed.
Lemma resize_ge (l : list A) n x :
  length l  n 
  resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le (l : list A) n x :
  n  length l 
  resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (NPeano.Nat.sub_0_le _ _)) by done.
754
  simpl. by rewrite (right_id [] (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
Qed.

Lemma resize_all (l : list A) x :
  resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt (l : list A) n x :
  n = length l 
  resize n x l = l.
Proof. intros. subst. by rewrite resize_all. Qed.

Lemma resize_plus (l : list A) n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
  revert n m.
  induction l; intros [|?] [|?]; simpl; f_equal; auto.
770
  * by rewrite plus_0_r, (right_id [] (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
  * by rewrite replicate_plus.
Qed.
Lemma resize_plus_eq (l : list A) n m x :
  length l = n 
  resize (n + m) x l = l ++ replicate m x.
Proof.
  intros. subst.
  by rewrite resize_plus, resize_all, drop_all, resize_nil.
Qed.

Lemma resize_app_le (l1 l2 : list A) n x :
  n  length l1 
  resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros.
  by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app_ge (l1 l2 : list A) n x :
  length l1  n 
  resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
  intros.
793
  rewrite !resize_spec, take_app_ge, (associative (++)) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
  do 2 f_equal. rewrite app_length. lia.
Qed.

Lemma resize_length (l : list A) n x : length (resize n x l) = n.
Proof.
  rewrite resize_spec, app_length, replicate_length, take_length. lia.
Qed.
Lemma resize_replicate (x : A) n m :
  resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; simpl; f_equal; auto. Qed.

Lemma resize_resize (l : list A) n m x :
  n  m 
  resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite !resize_nil, resize_replicate.
  * intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_idempotent (l : list A) n x :
  resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.

Lemma resize_take_le (l : list A) n m x :
  n  m 
  resize n x (take m l) = resize n x l.
Proof.
  revert n m.
  induction l; intros [|?] [|?] ?; simpl; f_equal; auto with lia.
Qed.
Lemma resize_take_eq (l : list A) n x :
  resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.

Lemma take_resize (l : list A) n m x :
  take n (resize m x l) = resize (min n m) x l.
Proof.
  revert n m.
  induction l; intros [|?] [|?]; simpl; f_equal; auto using take_replicate.
Qed.
Lemma take_resize_le (l : list A) n m x :
  n  m 
  take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_eq (l : list A) n x :
  take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_length_resize (l : list A) n x :
  length l  n 
  take (length l) (resize n x l) = l.
Proof. intros. by rewrite take_resize_le, resize_all. Qed.
Lemma take_length_resize_alt (l : list A) n m x :
  m = length l 
  m  n 
  take m (resize n x l) = l.
Proof. intros. subst. by apply take_length_resize. Qed.
Lemma take_resize_plus (l : list A) n m x :
  take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.

Lemma drop_resize_le (l : list A) n m x :
  n  m 
  drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  * intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_plus (l : list A) n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
865

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
Lemma delete_take_drop (l : list A) i :
  delete i l = take i l ++ drop (S i) l.
Proof. revert i. induction l; intros [|?]; simpl; auto using f_equal. Qed.

Lemma sublist_nil_l (l : list A) :
  sublist [] l.
Proof. induction l; try constructor; auto. Qed.
Lemma sublist_nil_r (l : list A) :
  sublist l []  l = [].
Proof. split. by inversion 1. intros. subst. constructor. Qed.

Lemma sublist_app_skip_l (k : list A) l1 l2 :
  sublist l1 l2 
  sublist l1 (k ++ l2).
Proof. induction k; try constructor; auto. Qed.
Lemma sublist_app_skip_r (k : list A) l1 l2 :
  sublist l1 l2 
  sublist l1 (l2 ++ k).
Proof. induction 1; simpl; try constructor; auto using sublist_nil_l. Qed.

Lemma sublist_cons_r (x : A) l k :
  sublist l (x :: k)  sublist l k   l', l = x :: l'  sublist l' k.
Proof.
  split.
  * inversion 1; eauto.
  * intros [?|(?&?&?)]; subst; constructor; auto.
Qed.
Lemma sublist_cons_l (x : A) l k :
  sublist (x :: l) k   k1 k2, k = k1 ++ x :: k2  sublist l k2.
Proof.
  split.
  * intros Hlk. induction k as [|y k IH]; inversion Hlk.
    + eexists [], k. by repeat constructor.
    + destruct IH as (k1 & k2 & ? & ?); subst; auto.
      by exists (y :: k1) k2.
  * intros (k1 & k2 & ? & ?). subst.
    by apply sublist_app_skip_l, sublist_cons.
Qed.

Lemma sublist_app_compat (l1 l2 k1 k2 : list A) :
  sublist l1 l2  sublist k1 k2 
  sublist (l1 ++ k1) (l2 ++ k2).
Proof. induction 1; simpl; try constructor; auto. Qed.

Lemma sublist_app_r (l k1 k2 : list A) :
  sublist l (k1 ++ k2)   l1 l2,
    l = l1 ++ l2  sublist l1 k1  sublist l2 k2.
Proof.
  split.
  * revert l k2. induction k1 as [|y k1 IH]; intros l k2; simpl.
    { eexists [], l. by repeat constructor. }
    rewrite sublist_cons_r. intros [?|(l' & ? &?)]; subst.
    + destruct (IH l k2) as (l1&l2&?&?&?); trivial; subst.
      exists l1 l2. auto using sublist_cons_skip.
    + destruct (IH l' k2) as (l1&l2&?&?&?); trivial; subst.
      exists (y :: l1) l2. auto using sublist_cons.
  * intros (?&?&?&?&?); subst. auto using sublist_app_compat.
Qed.
Lemma sublist_app_l (l1 l2 k : list A) :
  sublist (l1 ++ l2) k   k1 k2,
    k = k1 ++ k2  sublist l1 k1  sublist l2 k2.
Proof.
  split.
  * revert l2 k. induction l1 as [|x l1 IH]; intros l2 k; simpl.
    { eexists [], k. by repeat constructor. }
    rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
    destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
    exists (k1 ++ x :: h1) h2. rewrite <-(associative (++)).
    auto using sublist_app_skip_l, sublist_cons.
  * intros (?&?&?&?&?); subst. auto using sublist_app_compat.
Qed.

Global Instance: PreOrder (@sublist A).
Proof.
  split.
  * intros l. induction l; constructor; auto.
  * intros l1 l2 l3 Hl12. revert l3. induction Hl12.
    + auto using sublist_nil_l.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_app_skip_l, sublist_cons.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_app_skip_l, sublist_cons_skip.
Qed.

Lemma sublist_length (l1 l2 : list A) :
  sublist l1 l2  length l1  length l2.
Proof. induction 1; simpl; auto with arith. Qed.

Lemma sublist_take (l : list A) i :
  sublist (take i l) l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_app_skip_r. Qed.
Lemma sublist_drop (l : list A) i :
  sublist (drop i l) l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_app_skip_l. Qed.
Lemma sublist_delete (l : list A) i :
  sublist (delete i l) l.
Proof. revert i. by induction l; intros [|?]; simpl; constructor. Qed.
Lemma sublist_delete_list (l : list A) is :
  sublist (delete_list is l) l.
Proof.
  induction is as [|i is IH]; simpl; [done |].
  transitivity (delete_list is l); auto using sublist_delete.
Qed.

Lemma sublist_alt (l1 l2 : list A) :
  sublist l1 l2   is, l1 = delete_list is l2.
Proof.
  split.
  * intros Hl12.
    cut ( k,  is, k ++ l1 = delete_list is (k ++ l2)).
    { intros help. apply (help []). }
    induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
    + by eexists [].
    + destruct (IH (k ++ [x])) as [is His]. exists is.
      by rewrite <-!(associative (++)) in His.
    + destruct (IH k) as [is His]. exists (is ++ [length k]).
      unfold delete_list. rewrite fold_right_app. simpl.
      by rewrite delete_middle.
  * intros [is ?]. subst. apply sublist_delete_list.
Qed.

Global Instance: AntiSymmetric (@sublist A).
Proof.
  intros l1 l2 Hl12 Hl21. apply sublist_length in Hl21.
  induction Hl12; simpl in *.
  * done.
  * f_equal. auto with arith.
  * apply sublist_length in Hl12. lia.
Qed.

996
997
Section Forall_Exists.
  Context (P : A  Prop).
998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
  Lemma Forall_forall l :
    Forall P l   x, x  l  P x.
  Proof.
    split.
    * induction 1; inversion 1; subst; auto.
    * intros Hin. induction l; constructor.
      + apply Hin. constructor.
      + apply IHl. intros ??. apply Hin. by constructor.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
1009
1010
1011
1012
1013
1014
1015
1016
  Lemma Forall_nil : Forall P []  True.
  Proof. done. Qed.
  Lemma Forall_cons_1 x l : Forall P (x :: l)  P x  Forall P l.
  Proof. by inversion 1. Qed.
  Lemma Forall_cons x l : Forall P (x :: l)  P x  Forall P l.
  Proof. split. by inversion 1. intros [??]. by constructor. Qed.
  Lemma Forall_singleton x : Forall P [x]  P x.
  Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
  Lemma Forall_app l1 l2 : Forall P (l1 ++ l2)  Forall P l1  Forall P l2.
  Proof.
    split.
    * induction l1; inversion 1; intuition.
    * intros [H ?]. induction H; simpl; intuition.
  Qed.
  Lemma Forall_true l : ( x, P x)  Forall P l.
  Proof. induction l; auto. Qed.
  Lemma Forall_impl l (Q : A  Prop) :
    Forall P l  ( x, P x  Q x)  Forall Q l.
  Proof. intros H ?. induction H; auto. Defined.
Robbert Krebbers's avatar
Robbert Krebbers committed
1028

1029
1030
1031
1032
1033
1034
1035
1036
1037
  Global Instance Forall_proper:
    Proper (pointwise_relation _ () ==> (=) ==> ()) (@Forall A).
  Proof. split; subst; induction 1; constructor; firstorder. Qed.

  Lemma Forall_iff l (Q : A  Prop) :
    ( x, P x  Q x) 
    Forall P l  Forall Q l.
  Proof. intros H. apply Forall_proper. red. apply H. done. Qed.

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
  Lemma Forall_delete l i : Forall P l  Forall P (delete i l).
  Proof.
    intros H. revert i.
    by induction H; intros [|i]; try constructor.
  Qed.
  Lemma Forall_lookup l :
    Forall P l   i x, l !! i = Some x  P x.
  Proof.
    rewrite Forall_forall.
    setoid_rewrite elem_of_list_lookup.
    naive_solver.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1050
1051
1052
  Lemma Forall_lookup_1 l i x :
    Forall P l  l !! i = Some x  P x.
  Proof. rewrite Forall_lookup. eauto. Qed.
1053
1054
1055
1056
1057
1058
1059
1060
  Lemma Forall_alter f l i :
    Forall P l 
    ( x, l !! i = Some x  P x  P (f x)) 
    Forall P (alter f i l).
  Proof.
    intros Hl. revert i.
    induction Hl; simpl; intros [|i]; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1061

Robbert Krebbers's avatar
Robbert Krebbers committed
1062
1063
1064
1065
1066
1067
1068
  Lemma Forall_replicate n x :
    P x  Forall P (replicate n x).
  Proof. induction n; simpl; constructor; auto. Qed.
  Lemma Forall_replicate_eq n (x : A) :
    Forall (=x) (replicate n x).
  Proof. induction n; simpl; constructor; auto. Qed.

1069
1070
1071
1072
1073
1074
  Lemma Exists_exists l :
    Exists P l   x, x  l  P x.
  Proof.
    split.
    * induction 1 as [x|y ?? IH].
      + exists x. split. constructor. done.
1075
      + destruct IH as [x [??]]. exists x. split. by constructor. done.
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    * intros [x [Hin ?]]. induction l.
      + by destruct (not_elem_of_nil x).
      + inversion Hin; subst. by left. right; auto.
  Qed.
  Lemma Exists_inv x l : Exists P (x :: l)  P x  Exists P l.
  Proof. inversion 1; intuition trivial. Qed.
  Lemma Exists_app l1 l2 : Exists P (l1 ++ l2)  Exists P l1  Exists P l2.
  Proof.
    split.
    * induction l1; inversion 1; intuition.
    * intros [H|H].
      + induction H; simpl; intuition.
1088
      + induction l1; simpl; intuition.
1089
  Qed.
1090

1091
1092
1093
1094
  Global Instance Exists_proper:
    Proper (pointwise_relation _ () ==> (=) ==> ()) (@Exists A).
  Proof. split; subst; (induction 1; [left|right]; firstorder auto). Qed.

1095
1096
1097
1098
  Lemma Exists_not_Forall l : Exists (not  P) l  ¬Forall P l.
  Proof. induction 1; inversion_clear 1; contradiction. Qed.
  Lemma Forall_not_Exists l : Forall (not  P) l  ¬Exists P l.
  Proof. induction 1; inversion_clear 1; contradiction. Qed.
1099

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
  Context {dec :  x, Decision (P x)}.

  Fixpoint Forall_Exists_dec l : {Forall P l} + {Exists (not  P) l}.
  Proof.
   refine (
    match l with
    | [] => left _
    | x :: l => cast_if_and (dec x) (Forall_Exists_dec l)
    end); clear Forall_Exists_dec; abstract intuition.
  Defined.

  Lemma not_Forall_Exists l : ¬Forall P l  Exists (not  P) l.
  Proof. intro. destruct (Forall_Exists_dec l); intuition. Qed.

  Global Instance Forall_dec l : Decision (Forall P l) :=
    match Forall_Exists_dec l with
    | left H => left H
    | right H => right (Exists_not_Forall _ H)
    end.

  Fixpoint Exists_Forall_dec l : {Exists P l} + {Forall (not  P) l}.
  Proof.
   refine (
    match l with
    | [] => right _
    | x :: l => cast_if_or (dec x) (Exists_Forall_dec l)
    end); clear Exists_Forall_dec; abstract intuition.
  Defined.

  Lemma not_Exists_Forall l : ¬Exists P l  Forall (not  P) l.
  Proof. intro. destruct (Exists_Forall_dec l); intuition. Qed.

  Global Instance Exists_dec l : Decision (Exists P l) :=
    match Exists_Forall_dec l with
    | left H => left H
    | right H => right (Forall_not_Exists _ H)
    end.
1137
End Forall_Exists.
Robbert Krebbers's avatar
Robbert Krebbers committed
1138
End general_properties.
1139
1140

Section Forall2.
Robbert Krebbers's avatar
Robbert Krebbers committed
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
  Context {A B} (P : A  B  Prop).

  Lemma Forall2_nil_inv_l k :
    Forall2 P [] k  k = [].
  Proof. by inversion 1. Qed.
  Lemma Forall2_nil_inv_r k :
    Forall2 P k []  k = [].
  Proof. by inversion 1. Qed.

  Lemma Forall2_cons_inv l1 l2 x1 x2 :
    Forall2 P (x1 :: l1) (x2 :: l2)  P x1 x2  Forall2 P l1 l2.
  Proof. by inversion 1. Qed.
  Lemma Forall2_cons_inv_l l1 k x1 :
    Forall2 P (x1 :: l1) k   x2 l2,
      P x1 x2  Forall2 P l1 l2  k = x2 :: l2.
  Proof. inversion 1; subst; eauto. Qed.
  Lemma Forall2_cons_inv_r k l2 x2 :
    Forall2 P k (x2 :: l2)   x1 l1,
      P x1 x2  Forall2 P l1 l2  k = x1 :: l1.
  Proof. inversion 1; subst; eauto. Qed.
  Lemma Forall2_cons_nil_inv l1 x1 :
    Forall2 P (x1 :: l1) []  False.
  Proof. by inversion 1. Qed.
  Lemma Forall2_nil_cons_inv l2 x2 :
    Forall2 P [] (x2 :: l2)  False.
  Proof. by inversion 1. Qed.

  Lemma Forall2_flip l1 l2 :
    Forall2 P l1 l2  Forall2 (flip P) l2 l1.
  Proof. split; induction 1; constructor; auto. Qed.
1171
1172
1173
1174

  Lemma Forall2_length l1 l2 :
    Forall2 P l1 l2  length l1 = length l2.
  Proof. induction 1; simpl; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1175

1176
1177
  Lemma Forall2_impl (Q : A  B  Prop) l1 l2 :
    Forall2 P l1 l2  ( x y, P x y  Q x y)  Forall2 Q l1 l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
1178
  Proof. intros H ?. induction H; auto. Defined.
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189

  Lemma Forall2_unique l k1 k2 :
    Forall2 P l k1 
    Forall2 P l k2 
    ( x y1 y2, P x y1  P x y2  y1 = y2) 
    k1 = k2.
  Proof.
    intros H. revert k2.
    induction H; inversion_clear 1; intros; f_equal; eauto.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
1190
  Lemma Forall2_Forall_l (Q : A  Prop) l k :