list.v 142 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2014, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
Require Export Permutation.
6
Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
12
Arguments Forall_cons {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14 15 16
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
17

18 19 20
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23 24 25 26 27
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

28 29 30 31 32 33 34 35 36
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

37 38 39
(** * Definitions *)
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
40
Instance list_lookup {A} : Lookup nat A (list A) :=
41
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
42
  match l with
43
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
44
  end.
45 46 47

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
48 49
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
50 51
  match l with
  | [] => []
52
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
53
  end.
54

55 56
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
57 58 59 60 61 62
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
63

64 65 66
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
67 68
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
69 70
  match l with
  | [] => []
71
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
72
  end.
73 74 75

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
77 78
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
79 80 81 82

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
83
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85
  match l with
  | [] => []
86
  | x :: l => if decide (P x) then x :: filter P l else filter P l
87 88 89 90 91 92 93
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option nat :=
  fix go l :=
  match l with
94
  | [] => None | x :: l => if decide (P x) then Some 0 else S <$> go l
95
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
96 97 98 99

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
100
  match n with 0 => [] | S n => x :: replicate n x end.
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103 104

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

105 106 107 108
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
109

Robbert Krebbers's avatar
Robbert Krebbers committed
110 111 112 113 114 115
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
116
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
117 118 119
  end.
Arguments resize {_} !_ _ !_.

120 121 122
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
123 124
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
125
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
126 127
  end.

128
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
129 130 131 132
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
133

134 135 136 137
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
138
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
139 140 141

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
142 143
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
144 145 146 147 148 149
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
150 151
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
152 153
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
154
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
155
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
156
  fix go l :=
157
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
158 159 160 161 162

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
163
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
164
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
165 166 167 168 169 170 171 172 173 174 175
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
176

177 178 179 180 181 182 183
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
184 185 186 187

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
188
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
189 190
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
191
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
192

193 194
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
195 196
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
197 198
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
199 200
Hint Extern 0 (?x `prefix_of` ?y) => reflexivity.
Hint Extern 0 (?x `suffix_of` ?y) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
201

202 203 204 205 206 207 208 209
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
210
      if decide_rel (=) x1 x2
211
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
212 213 214 215 216
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
217 218
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
219
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
220

221
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
222 223 224
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
225
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
226
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
227
Infix "`sublist`" := sublist (at level 70) : C_scope.
228
Hint Extern 0 (?x `sublist` ?y) => reflexivity.
229 230

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
231
from [l1] while possiblity changing the order. *)
232 233 234 235
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
236
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
237 238
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
239
Hint Extern 0 (?x `contains` ?y) => reflexivity.
240 241 242 243 244 245 246 247 248 249

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
250
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
251 252
    end.
End contains_dec_help.
253

254 255 256 257 258
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
284
      then list_difference l k else x :: list_difference l k
285
    end.
286
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
287 288 289 290 291
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
292
      then x :: list_intersection l k else list_intersection l k
293 294 295 296 297 298 299 300 301
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
302 303

(** * Basic tactics on lists *)
304 305 306
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
307 308
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
309
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
310
Tactic Notation "discriminate_list_equality" :=
311 312 313
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.
314

315 316 317
(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
318 319 320 321 322 323 324 325 326
Lemma app_injective_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_injective_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
  intros ? Hl. apply app_injective_1; auto.
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
327
Ltac simple_simplify_list_equality :=
328
  repeat match goal with
329
  | _ => progress simplify_equality'
330
  | H : _ ++ _ = _ ++ _ |- _ => first
331 332 333
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_injective_1 in H; [destruct H|done]
    | apply app_injective_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
334
  | H : [?x] !! ?i = Some ?y |- _ =>
335
    destruct i; [change (Some x = Some y) in H | discriminate]
336
  end.
337

338 339
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
340
Context {A : Type}.
341 342
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
343

344 345 346
Global Instance: Injective2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance:  k, Injective (=) (=) (k ++).
347
Proof. intros ???. apply app_inv_head. Qed.
348
Global Instance:  k, Injective (=) (=) (++ k).
349
Proof. intros ???. apply app_inv_tail. Qed.
350 351 352 353 354 355
Global Instance: Associative (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
356

357
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
358
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
359 360
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
361
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
362 363 364
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
365 366
Proof.
  revert l2. induction l1; intros [|??] H.
367
  * done.
368 369
  * discriminate (H 0).
  * discriminate (H 0).
370
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
371
Qed.
372
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
373
  Decision (l = k) := list_eq_dec dec.
374 375 376 377 378 379 380 381
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
382
Lemma nil_or_length_pos l : l = []  length l  0.
383
Proof. destruct l; simpl; auto with lia. Qed.
384
Lemma nil_length_inv l : length l = 0  l = [].
385 386
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
387
Proof. by destruct i. Qed.
388
Lemma lookup_tail l i : tail l !! i = l !! S i.
389
Proof. by destruct l. Qed.
390 391
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
392
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
393 394 395 396 397
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
398
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
399 400 401 402 403 404 405 406 407
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
408 409 410
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
Proof.
412 413 414 415 416
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  * by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
417
Qed.
418
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
419
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
420 421
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
422
Lemma lookup_app_r l1 l2 i : (l1 ++ l2) !! (length l1 + i) = l2 !! i.
423 424 425 426
Proof. revert i. induction l1; intros [|i]; simplify_equality'; auto. Qed.
Lemma lookup_app_r_alt l1 l2 i j :
  j = length l1  (l1 ++ l2) !! (j + i) = l2 !! i.
Proof. intros ->. by apply lookup_app_r. Qed.
427 428
Lemma lookup_app_r_Some l1 l2 i x :
  l2 !! i = Some x  (l1 ++ l2) !! (length l1 + i) = Some x.
429
Proof. by rewrite lookup_app_r. Qed.
430 431 432
Lemma lookup_app_minus_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. intros. rewrite <-(lookup_app_r l1 l2). f_equal. lia. Qed.
433 434
Lemma lookup_app_inv l1 l2 i x :
  (l1 ++ l2) !! i = Some x  l1 !! i = Some x  l2 !! (i - length l1) = Some x.
435
Proof. revert i. induction l1; intros [|i] ?; simplify_equality'; auto. Qed.
436 437 438
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
439

440
Lemma alter_length f l i : length (alter f i l) = length l.
441
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
442
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
443
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
444
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
445
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
446
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
447
Proof.
448
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
449
Qed.
450
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
451 452
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
453
Proof.
454
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
455
Qed.
456 457
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
458
Proof.
459
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
Robbert Krebbers's avatar
Robbert Krebbers committed
460 461 462
  * by exists 1 x1.
  * by exists 0 x0.
Qed.
463 464
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
465
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
466
Lemma alter_app_r f l1 l2 i :
467
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
468
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
469 470
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
471 472 473 474
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
475 476 477
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
478 479
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
480
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
481 482
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
483
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
484 485
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
486
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
487
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
488
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
489 490
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
491 492 493 494
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
495
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
496
Proof. induction l1; f_equal'; auto. Qed.
497

498
(** ** Properties of the [elem_of] predicate *)
499
Lemma not_elem_of_nil x : x  [].
500
Proof. by inversion 1. Qed.
501
Lemma elem_of_nil x : x  []  False.
502
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
503
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
504
Proof. destruct l. done. by edestruct 1; constructor. Qed.
505 506
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
507
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
508
Proof. split; [inversion 1; subst|intros [->|?]]; constructor (done). Qed.
509
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
510
Proof. rewrite elem_of_cons. tauto. Qed.
511
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
512
Proof.
513
  induction l1.
514
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
515
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
516
Qed.
517
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
518
Proof. rewrite elem_of_app. tauto. Qed.
519
Lemma elem_of_list_singleton x y : x  [y]  x = y.
520
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
521
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
522
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
523
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
524
Proof.
525 526
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
  by exists (y :: l1) l2.
527
Qed.
528
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
529
Proof.
530 531
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
532
Qed.
533
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
534
Proof.
535
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
536
Qed.
537 538
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
539 540 541 542 543 544 545 546 547
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
  * induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
      setoid_rewrite elem_of_cons; naive_solver.
  * intros (x&Hx&?). induction Hx; csimpl; repeat case_match;
      simplify_equality; auto; constructor (by auto).
Qed.
548

549
(** ** Properties of the [NoDup] predicate *)
550 551
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
552
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
553
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
554
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
555
Proof. rewrite NoDup_cons. by intros [??]. Qed.
556
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
557
Proof. rewrite NoDup_cons. by intros [??]. Qed.
558
Lemma NoDup_singleton x : NoDup [x].
559
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
560
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
561
Proof.
562
  induction l; simpl.
563
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
564
  * rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
565
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
566
Qed.
567
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
568 569 570 571 572 573 574
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
575 576
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
577 578 579 580 581 582
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
583 584
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
585
Proof.
586 587 588 589 590
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
  * apply IH. intros i j x' ??. by apply (injective S), (Hl (S i) (S j) x').
591
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
592

593 594 595 596 597 598
Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
599
    | x :: l =>
600 601 602 603 604 605 606 607
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
608
    end.
609
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
610 611 612 613
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
614
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
615 616 617 618
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
619
End no_dup_dec.
620

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

684
(** ** Properties of the [filter] function *)
685 686 687 688 689 690 691
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
692
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
693 694 695 696 697
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.
Robbert Krebbers's avatar
Robbert Krebbers committed
698

699 700 701
(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
702 703
  Lemma list_find_Some l i :
    list_find P l = Some i   x, l !! i = Some x  P x.
704
  Proof.
705
    revert i. induction l; intros [] ?; simplify_option_equality; eauto.
706 707 708
  Qed.
  Lemma list_find_elem_of l x : x  l  P x   i, list_find P l = Some i.
  Proof.
709 710
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [i ->]; [|exists (S i)].
711 712 713 714 715 716 717
  Qed.
End find.

Section find_eq.
  Context `{ x y, Decision (x = y)}.
  Lemma list_find_eq_Some l i x : list_find (x =) l = Some i  l !! i = Some x.
  Proof.
718 719
    intros.
    destruct (list_find_Some (x =) l i) as (?&?&?); auto with congruence.
720 721 722 723 724
  Qed.
  Lemma list_find_eq_elem_of l x : x  l   i, list_find (x=) l = Some i.
  Proof. eauto using list_find_elem_of. Qed.
End find_eq.

725
(** ** Properties of the [reverse] function *)
726 727
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
728
Lemma reverse_singleton x : reverse [x] = [x].
729
Proof. done. Qed.
730
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
731
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
732
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
733
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
734
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
735
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
736
Lemma reverse_length l : length (reverse l) = length l.
737
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
738
Lemma reverse_involutive l : reverse (reverse l) = l.
739
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Global Instance: Injective (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
755 756 757 758 759 760 761 762
Lemma sum_list_with_app (f : A  nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A  nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.
763

764 765 766
(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
767 768 769 770
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
771

772 773 774 775 776 777 778
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_equality'; f_equal; auto.
Qed.
779
Lemma take_nil n : take n (@nil A) = [].
Robbert Krebbers's avatar
Robbert Krebbers committed
780
Proof. by destruct n. Qed.
781
Lemma take_app l k : take (length l) (l ++ k) = l.
782
Proof. induction l; f_equal'; auto. Qed.
783
Lemma take_app_alt l k n : n = length l  take n (l ++ k) = l.
Robbert Krebbers's avatar
Robbert Krebbers committed
784
Proof. intros Hn. by rewrite Hn, take_app. Qed.
785
Lemma take_app_le l k n : n  length l  take n (l ++ k) = take n l.
786
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
787 788 789
Lemma take_plus_app l k n m :
  length l = n  take (n + m) (l ++ k) = l ++ take m k.
Proof. intros <-. induction l; f_equal'; auto. Qed.
790 791
Lemma take_app_ge l k n :
  length l  n  take n (l ++ k) = l ++ take (n - length l) k.
792
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.