list.v 177 KB
Newer Older
1
(* Copyright (c) 2012-2019, Coq-std++ developers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
7
Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9 10 11
Arguments length {_} _ : assert.
Arguments cons {_} _ _ : assert.
Arguments app {_} _ _ : assert.
12

13 14 15
Instance: Params (@length) 1 := {}.
Instance: Params (@cons) 1 := {}.
Instance: Params (@app) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
16

17 18 19
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
20

21
Arguments head {_} _ : assert.
22 23 24
Arguments tail {_} _ : assert.
Arguments take {_} !_ !_ / : assert.
Arguments drop {_} !_ !_ / : assert.
25

26
Instance: Params (@head) 1 := {}.
27 28 29
Instance: Params (@tail) 1 := {}.
Instance: Params (@take) 1 := {}.
Instance: Params (@drop) 1 := {}.
30

31 32
Arguments Permutation {_} _ _ : assert.
Arguments Forall_cons {_} _ _ _ _ _ : assert.
33
Remove Hints Permutation_cons : typeclass_instances.
34

35 36 37 38 39 40
Notation "(::)" := cons (only parsing) : list_scope.
Notation "( x ::)" := (cons x) (only parsing) : list_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : list_scope.
Notation "(++)" := app (only parsing) : list_scope.
Notation "( l ++)" := (app l) (only parsing) : list_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : list_scope.
41 42 43 44 45 46 47 48 49

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.
50

Robbert Krebbers's avatar
Robbert Krebbers committed
51 52 53 54
Infix "≡ₚ@{ A }" :=
  (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

58
(** * Definitions *)
59 60 61 62 63 64
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

65 66
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
67 68
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
69
  match l with
70
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
71
  end.
72 73 74

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
75
Instance list_alter {A} : Alter nat A (list A) := λ f,
76
  fix go i l {struct l} :=
77 78
  match l with
  | [] => []
79
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
80
  end.
81

82 83
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
84 85
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
86 87 88 89
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
90 91 92 93 94
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
95
Instance: Params (@list_inserts) 1 := {}.
96

97 98 99
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
100 101
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
102 103
  match l with
  | [] => []
104
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
105
  end.
106 107 108

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
109
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
110
Instance: Params (@option_list) 1 := {}.
111
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
112
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
113 114 115 116

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
117
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
  match l with
  | [] => []
120
  | x :: l => if decide (P x) then x :: filter P l else filter P l
121 122 123 124
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
125
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
126 127
  fix go l :=
  match l with
128 129
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
130
  end.
131
Instance: Params (@list_find) 3 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133 134 135

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
136
  match n with 0 => [] | S n => x :: replicate n x end.
137
Instance: Params (@replicate) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
138 139 140

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
141
Instance: Params (@reverse) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
142

143 144 145 146
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
147
Instance: Params (@last) 1 := {}.
148

Robbert Krebbers's avatar
Robbert Krebbers committed
149 150 151 152 153 154
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
155
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
156
  end.
157
Arguments resize {_} !_ _ !_ : assert.
158
Instance: Params (@resize) 2 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
159

160 161 162
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
163 164
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
165
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
166
  end.
167
Instance: Params (@reshape) 2 := {}.
168

169
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
170 171 172 173
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
174

175 176 177 178
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
179
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
180 181 182

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
183 184
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
185 186 187 188 189 190
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
191 192
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
193 194
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
195
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
196
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
197
  fix go l :=
198
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
199 200 201

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
202 203 204 205 206
Fixpoint imap {A B} (f : nat  A  B) (l : list A) : list B :=
  match l with
  | [] => []
  | x :: l => f 0 x :: imap (f  S) l
  end.
207

208
Definition zipped_map {A B} (f : list A  list A  A  B) :
Robbert Krebbers's avatar
Robbert Krebbers committed
209 210 211 212 213
    list A  list A  list B := fix go l k :=
  match k with
  | [] => []
  | x :: k => f l k x :: go (x :: l) k
  end.
214

Robbert Krebbers's avatar
Robbert Krebbers committed
215
Fixpoint imap2 {A B C} (f : nat  A  B  C) (l : list A) (k : list B) : list C :=
Robbert Krebbers's avatar
Robbert Krebbers committed
216
  match l, k with
Robbert Krebbers's avatar
Robbert Krebbers committed
217 218
  | [], _ | _, [] => []
  | x :: l, y :: k => f 0 x y :: imap2 (f  S) l k
Robbert Krebbers's avatar
Robbert Krebbers committed
219 220
  end.

221 222 223 224 225
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
226 227
Arguments zipped_Forall_nil {_ _} _ : assert.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
228

229 230 231 232 233 234 235
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
236 237 238 239

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
240
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
241 242
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
243
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
244

Robbert Krebbers's avatar
Robbert Krebbers committed
245 246 247 248
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
249 250
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
251 252
Hint Extern 0 (_ `prefix_of` _) => reflexivity : core.
Hint Extern 0 (_ `suffix_of` _) => reflexivity : core.
Robbert Krebbers's avatar
Robbert Krebbers committed
253

254
Section prefix_suffix_ops.
255 256
  Context `{EqDecision A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
257
  Definition max_prefix : list A  list A  list A * list A * list A :=
258 259 260 261 262
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
263
      if decide_rel (=) x1 x2
264
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
265
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
266 267
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
268 269
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
Robbert Krebbers's avatar
Robbert Krebbers committed
270 271
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
272
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
273

274
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
275 276 277
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
278
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
279
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
280
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
281
Hint Extern 0 (_ `sublist_of` _) => reflexivity : core.
282

Robbert Krebbers's avatar
Robbert Krebbers committed
283
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
284
from [l1] while possiblity changing the order. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
285 286 287 288 289 290
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2  submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2  submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2  submseteq l2 l3  submseteq l1 l3.
291
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
292
Hint Extern 0 (_ + _) => reflexivity : core.
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307
(** Removes [x] from the list [l]. The function returns a [Some] when the
+removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
  | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l = list_remove_list k
  end.
308

309 310 311 312 313
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
314

315 316
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2,  x, x  l1  x  l2.
317

318
Section list_set.
319
  Context `{dec : EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
  Global Instance elem_of_list_dec : RelDecision (@{list A}).
321 322
  Proof.
   refine (
323
    fix go x l :=
324 325
    match l return Decision (x  l) with
    | [] => right _
326
    | y :: l => cast_if_or (decide (x = y)) (go x l)
327 328 329 330 331 332 333 334 335 336 337 338 339
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
340
      then list_difference l k else x :: list_difference l k
341
    end.
342
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
343 344 345 346 347
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
348
      then x :: list_intersection l k else list_intersection l k
349 350 351 352 353 354 355 356 357
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
358

359 360 361 362
(** These next functions allow to efficiently encode lists of positives (bit
strings) into a single positive and go in the other direction as well. This is
for example used for the countable instance of lists and in namespaces.
 The main functions are [positives_flatten] and [positives_unflatten]. *)
363 364 365 366 367 368
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
  match xs with
  | [] => acc
  | x :: xs => positives_flatten_go xs (acc~1~0 ++ Preverse (Pdup x))
  end.

369 370 371 372 373 374 375
(** Flatten a list of positives into a single positive by duplicating the bits
of each element, so that:

- [0 -> 00]
- [1 -> 11]

and then separating each element with [10]. *)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
Definition positives_flatten (xs : list positive) : positive :=
  positives_flatten_go xs 1.

Fixpoint positives_unflatten_go
        (p : positive)
        (acc_xs : list positive)
        (acc_elm : positive)
  : option (list positive) :=
  match p with
  | 1 => Some acc_xs
  | p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
  | p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
  | p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
  | _ => None
  end%positive.

(** Unflatten a positive into a list of positives, assuming the encoding
393
used by [positives_flatten]. *)
394 395 396
Definition positives_unflatten (p : positive) : option (list positive) :=
  positives_unflatten_go p [] 1.

Simon Spies's avatar
Simon Spies committed
397

Simon Spies's avatar
Simon Spies committed
398
(** [seqZ m n] generates the sequence [m], [m + 1], ..., [m + n - 1] over integers, provided [n >= 0]. If n < 0, then the range is empty. **)
Simon Spies's avatar
Simon Spies committed
399
Definition seqZ (m len: Z) : list Z := (λ i: nat, Z.add i m) <$> (seq 0 (Z.to_nat len)).
Simon Spies's avatar
Simon Spies committed
400
Arguments seqZ : simpl never.
Simon Spies's avatar
Simon Spies committed
401

402
(** * Basic tactics on lists *)
Robbert Krebbers's avatar
Robbert Krebbers committed
403
(** The tactic [discriminate_list] discharges a goal if it submseteq
404 405
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
406
Tactic Notation "discriminate_list" hyp(H) :=
407
  apply (f_equal length) in H;
408
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
409
Tactic Notation "discriminate_list" :=
410
  match goal with H : _ =@{list _} _ |- _ => discriminate_list H end.
411

412
(** The tactic [simplify_list_eq] simplifies hypotheses involving
413 414
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
415
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
416 417
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
418
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
419 420
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
421
  intros ? Hl. apply app_inj_1; auto.
422 423
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
424
Ltac simplify_list_eq :=
425
  repeat match goal with
426
  | _ => progress simplify_eq/=
427
  | H : _ ++ _ = _ ++ _ |- _ => first
428
    [ apply app_inv_head in H | apply app_inv_tail in H
429 430
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
431
  | H : [?x] !! ?i = Some ?y |- _ =>
432
    destruct i; [change (Some x = Some y) in H | discriminate]
433
  end.
434

435 436
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
437
Context {A : Type}.
438 439
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
440

441
Global Instance: Inj2 (=) (=) (=) (@cons A).
442
Proof. by injection 1. Qed.
443
Global Instance:  k, Inj (=) (=) (k ++).
444
Proof. intros ???. apply app_inv_head. Qed.
445
Global Instance:  k, Inj (=) (=) (++ k).
446
Proof. intros ???. apply app_inv_tail. Qed.
447
Global Instance: Assoc (=) (@app A).
448 449 450 451 452
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
453

454
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
455
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
456 457
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
458
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
459 460 461
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
462
Proof.
463
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
464 465 466
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
467
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
468
Qed.
469 470
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
471 472 473
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
474
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
475 476 477 478
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
479
Lemma nil_or_length_pos l : l = []  length l  0.
480
Proof. destruct l; simpl; auto with lia. Qed.
481
Lemma nil_length_inv l : length l = 0  l = [].
482 483
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
484
Proof. by destruct i. Qed.
485
Lemma lookup_tail l i : tail l !! i = l !! S i.
486
Proof. by destruct l. Qed.
487
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
488
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
489 490 491
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
492
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
493 494 495 496 497 498 499 500
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
501 502 503
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
504
Proof.
505
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
506
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
507 508
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
509
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
510
Qed.
511
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
512
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
513 514
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
515
Lemma lookup_app_r l1 l2 i :
516
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
517 518 519 520 521 522
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
523
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
524
      simplify_eq/=; auto with lia.
525
    destruct (IH i) as [?|[??]]; auto with lia.
526
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
527
Qed.
528 529 530
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
531

532
Lemma nth_lookup l i d : nth i l d = default d (l !! i).
533 534 535 536
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x  nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l  i}.
Ralf Jung's avatar
Ralf Jung committed
537
Proof.
538
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Ralf Jung's avatar
Ralf Jung committed
539 540
Qed.

541
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
542
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
543
Lemma alter_length f l i : length (alter f i l) = length l.
544
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
545
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
546
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
547
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
548
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
549
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
550
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
551
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
552
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
553
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
554
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
555 556 557 558 559 560
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
561
  - intros Hy. assert (j < length l).
562 563
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
564
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
565 566 567
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
568
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
569 570
Lemma list_insert_id l i x : l !! i = Some x  <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] [=]; f_equal/=; auto. Qed.
571 572
Lemma list_insert_ge l i x : length l  i  <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
573

574 575
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
576
Proof.
577
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
578 579
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
580
Qed.
581 582
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
583
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
584
Lemma alter_app_r f l1 l2 i :
585
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
586
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
587 588
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
589 590 591 592
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
593
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
594
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
595 596
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
597
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
598 599
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
600
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
601 602
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
603
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
604 605
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
606
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
607
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
608
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
609 610
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
611 612 613 614
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
615
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
616
Proof. induction l1; f_equal/=; auto. Qed.
617

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
655
  - intros Hy. assert (j < length l).
656 657
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
658
  - intuition. by rewrite list_lookup_inserts by lia.
659 660 661 662 663 664 665 666
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

667
(** ** Properties of the [elem_of] predicate *)
668
Lemma not_elem_of_nil x : x  [].
669
Proof. by inversion 1. Qed.
670
Lemma elem_of_nil x : x  []  False.
671
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
672
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
673
Proof. destruct l. done. by edestruct 1; constructor. Qed.
674 675
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
676
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
677
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
678
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
679
Proof. rewrite elem_of_cons. tauto. Qed.
680
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
681
Proof.
682
  induction l1.
683 684
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
685
Qed.
686
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
687
Proof. rewrite elem_of_app. tauto. Qed.
688
Lemma elem_of_list_singleton x y : x  [y]  x = y.
689
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
690
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
691
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
692
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
693
Proof.
694
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
695
  by exists (y :: l1), l2.
696
Qed.
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
Lemma elem_of_list_split_l `{EqDecision A} l x :
  x  l   l1 l2, l = l1 ++ x :: l2  x  l1.
Proof.
  induction 1 as [x l|x y l ? IH].
  { exists [], l. rewrite elem_of_nil. naive_solver. }
  destruct (decide (x = y)) as [->|?].
  - exists [], l. rewrite elem_of_nil. naive_solver.
  - destruct IH as (l1 & l2 & -> & ?).
    exists (y :: l1), l2. rewrite elem_of_cons. naive_solver.
Qed.
Lemma elem_of_list_split_r `{EqDecision A} l x :
  x  l   l1 l2, l = l1 ++ x :: l2  x  l2.
Proof.
  induction l as [|y l IH] using rev_ind.
  { by rewrite elem_of_nil. }
  destruct (decide (x = y)) as [->|].
  - exists l, []. rewrite elem_of_nil. naive_solver.
  - rewrite elem_of_app, elem_of_list_singleton. intros [?| ->]; try done.
    destruct IH as (l1 & l2 & -> & ?); auto.
    exists l1, (l2 ++ [y]).
    rewrite elem_of_app, elem_of_list_singleton, <-(assoc_L (++)). naive_solver.
Qed.
719
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
720
Proof.
721 722
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
723
Qed.
724
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
725
Proof.
726
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
727
Qed.
728 729
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
730 731 732 733
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
734
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
735
      setoid_rewrite elem_of_cons; naive_solver.
736
  - intros (x&Hx&?).