fin_maps.v 71.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2 3 4
(* This file is distributed under the terms of the BSD license. *)
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
5
induction principles for finite maps and implements the tactic
6
[simplify_map_eq] to simplify goals involving finite maps. *)
7
From Coq Require Import Permutation.
8
From stdpp Require Export relations orders vector.
9
Set Default Proof Using "Type*".
10

11 12
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
13 14 15 16 17
course limits the space of finite map implementations, but since we are mainly
interested in finite maps with numbers as indexes, we do not consider this to
be a serious limitation. The main application of finite maps is to implement
the memory, where extensionality of Leibniz equality is very important for a
convenient use in the assertions of our axiomatic semantics. *)
18

Robbert Krebbers's avatar
Robbert Krebbers committed
19 20
(** Finiteness is axiomatized by requiring that each map can be translated
to an association list. The translation to association lists is used to
21
prove well founded recursion on finite maps. *)
22

23 24 25
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with]. *)
26

27
Class FinMapToList K A M := map_to_list: M  list (K * A).
Robbert Krebbers's avatar
Robbert Krebbers committed
28

29 30
Class FinMap K M `{FMap M,  A, Lookup K A (M A),  A, Empty (M A),  A,
    PartialAlter K A (M A), OMap M, Merge M,  A, FinMapToList K A (M A),
31
    EqDecision K} := {
32 33
  map_eq {A} (m1 m2 : M A) : ( i, m1 !! i = m2 !! i)  m1 = m2;
  lookup_empty {A} i : ( : M A) !! i = None;
34 35 36 37
  lookup_partial_alter {A} f (m : M A) i :
    partial_alter f i m !! i = f (m !! i);
  lookup_partial_alter_ne {A} f (m : M A) i j :
    i  j  partial_alter f i m !! j = m !! j;
38
  lookup_fmap {A B} (f : A  B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
39
  NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m);
40 41
  elem_of_map_to_list {A} (m : M A) i x :
    (i,x)  map_to_list m  m !! i = Some x;
42
  lookup_omap {A B} (f : A  option B) m i : omap f m !! i = m !! i = f;
43
  lookup_merge {A B C} (f: option A  option B  option C) `{!DiagNone f} m1 m2 i :
44
    merge f m1 m2 !! i = f (m1 !! i) (m2 !! i)
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46
}.

47 48 49
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
50 51
significant performance loss to make including them in the finite map interface
worthwhile. *)
52 53 54 55 56 57 58 59 60 61
Instance map_insert `{PartialAlter K A M} : Insert K A M :=
  λ i x, partial_alter (λ _, Some x) i.
Instance map_alter `{PartialAlter K A M} : Alter K A M :=
  λ f, partial_alter (fmap f).
Instance map_delete `{PartialAlter K A M} : Delete K M :=
  partial_alter (λ _, None).
Instance map_singleton `{PartialAlter K A M, Empty M} :
  SingletonM K A M := λ i x, <[i:=x]> .

Definition map_of_list `{Insert K A M, Empty M} : list (K * A)  M :=
62
  fold_right (λ p, <[p.1:=p.2]>) .
63 64
Definition map_of_collection `{Elements K C, Insert K A M, Empty M}
    (f : K  option A) (X : C) : M :=
65
  map_of_list (omap (λ i, (i,) <$> f i) (elements X)).
Robbert Krebbers's avatar
Robbert Krebbers committed
66

67 68 69 70 71 72
Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
  λ f, merge (union_with f).
Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
  λ f, merge (intersection_with f).
Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
  λ f, merge (difference_with f).
Robbert Krebbers's avatar
Robbert Krebbers committed
73

74
Instance map_equiv `{ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 18 :=
75
  λ m1 m2,  i, m1 !! i  m2 !! i.
Robbert Krebbers's avatar
Robbert Krebbers committed
76

77 78
(** The relation [intersection_forall R] on finite maps describes that the
relation [R] holds for each pair in the intersection. *)
79
Definition map_Forall `{Lookup K A M} (P : K  A  Prop) : M  Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  λ m,  i x, m !! i = Some x  P i x.
81
Definition map_relation `{ A, Lookup K A (M A)} {A B} (R : A  B  Prop)
Robbert Krebbers's avatar
Robbert Krebbers committed
82 83
    (P : A  Prop) (Q : B  Prop) (m1 : M A) (m2 : M B) : Prop :=  i,
  option_relation R P Q (m1 !! i) (m2 !! i).
84
Definition map_included `{ A, Lookup K A (M A)} {A}
Robbert Krebbers's avatar
Robbert Krebbers committed
85
  (R : relation A) : relation (M A) := map_relation R (λ _, False) (λ _, True).
86
Definition map_disjoint `{ A, Lookup K A (M A)} {A} : relation (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
87 88 89 90 91
  map_relation (λ _ _, False) (λ _, True) (λ _, True).
Infix "⊥ₘ" := map_disjoint (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Notation "( m ⊥ₘ.)" := (map_disjoint m) (only parsing) : C_scope.
Notation "(.⊥ₘ m )" := (λ m2, m2  m) (only parsing) : C_scope.
92
Instance map_subseteq `{ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  map_included (=).
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96 97 98

(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
99
Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
100 101 102
Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
  intersection_with (λ x _, Some x).

103 104
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
105
Instance map_difference `{Merge M} {A} : Difference (M A) :=
106
  difference_with (λ _ _, None).
Robbert Krebbers's avatar
Robbert Krebbers committed
107

108 109
(** A stronger variant of map that allows the mapped function to use the index
of the elements. Implemented by conversion to lists, so not very efficient. *)
110 111
Definition map_imap `{ A, Insert K A (M A),  A, Empty (M A),
     A, FinMapToList K A (M A)} {A B} (f : K  A  option B) (m : M A) : M B :=
112 113
  map_of_list (omap (λ ix, (fst ix,) <$> curry f ix) (map_to_list m)).

114 115 116 117
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.

Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
(** ** Setoids *)
Section setoid.
120 121
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
122 123
  Proof.
    split.
124 125
    - by intros m i.
    - by intros m1 m2 ? i.
126
    - by intros m1 m2 m3 ?? i; trans (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
127
  Qed.
128 129
  Global Instance lookup_proper (i : K) :
    Proper (() ==> ()) (lookup (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
130 131
  Proof. by intros m1 m2 Hm. Qed.
  Global Instance partial_alter_proper :
132
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (partial_alter (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
133 134 135 136 137 138
  Proof.
    by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
      rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
      try apply Hf; apply lookup_proper.
  Qed.
  Global Instance insert_proper (i : K) :
139
    Proper (() ==> () ==> ()) (insert (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
140
  Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
141 142
  Global Instance singleton_proper k :
    Proper (() ==> ()) (singletonM k : A  M A).
143
  Proof. by intros ???; apply insert_proper. Qed.
144 145
  Global Instance delete_proper (i : K) :
    Proper (() ==> ()) (delete (M:=M A) i).
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147
  Proof. by apply partial_alter_proper; [constructor|]. Qed.
  Global Instance alter_proper :
148
    Proper ((() ==> ()) ==> (=) ==> () ==> ()) (alter (A:=A) (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
149 150 151 152
  Proof.
    intros ?? Hf; apply partial_alter_proper.
    by destruct 1; constructor; apply Hf.
  Qed.
153
  Lemma merge_ext f g `{!DiagNone f, !DiagNone g} :
Robbert Krebbers's avatar
Robbert Krebbers committed
154
    (() ==> () ==> ())%signature f g 
155
    (() ==> () ==> ())%signature (merge (M:=M) f) (merge g).
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157 158 159
  Proof.
    by intros Hf ?? Hm1 ?? Hm2 i; rewrite !lookup_merge by done; apply Hf.
  Qed.
  Global Instance union_with_proper :
160
    Proper ((() ==> () ==> ()) ==> () ==> () ==>()) (union_with (M:=M A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
161 162 163
  Proof.
    intros ?? Hf ?? Hm1 ?? Hm2 i; apply (merge_ext _ _); auto.
    by do 2 destruct 1; first [apply Hf | constructor].
164
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
165 166
  Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
  Proof.
167 168
    intros m1 m2 Hm; apply map_eq; intros i.
    by unfold_leibniz; apply lookup_proper.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
  Qed.
170 171 172 173 174
  Lemma map_equiv_empty (m : M A) : m    m = .
  Proof.
    split; [intros Hm; apply map_eq; intros i|by intros ->].
    by rewrite lookup_empty, <-equiv_None, Hm, lookup_empty.
  Qed.
175
  Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
176
    m1  m2  m1 !! i = Some x   y, m2 !! i = Some y  x  y.
177
  Proof. generalize (equiv_Some_inv_l (m1 !! i) (m2 !! i) x); naive_solver. Qed.
178 179 180 181 182
  Global Instance map_fmap_proper `{Equiv B} (f : A  B) :
    Proper (() ==> ()) f  Proper (() ==> ()) (fmap (M:=M) f).
  Proof.
    intros ? m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
183 184 185
End setoid.

(** ** General properties *)
186 187 188 189 190
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2   i, m1 !! i = m2 !! i.
Proof. split. by intros ->. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
  m1  m2   i x, m1 !! i = Some x  m2 !! i = Some x.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
191
  unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
192 193
    specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
194 195
Global Instance:  {A} (R : relation A), PreOrder R  PreOrder (map_included R).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
  split; [intros m i; by destruct (m !! i); simpl|].
197
  intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
198
  destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
199
    done || etrans; eauto.
200
Qed.
201
Global Instance: PartialOrder (() : relation (M A)).
202
Proof.
203 204 205
  split; [apply _|].
  intros m1 m2; rewrite !map_subseteq_spec.
  intros; apply map_eq; intros i; apply option_eq; naive_solver.
206 207 208
Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
  m1 !! i = Some x  m1  m2  m2 !! i = Some x.
209
Proof. rewrite !map_subseteq_spec. auto. Qed.
210 211 212 213 214 215
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
  is_Some (m1 !! i)  m1  m2  is_Some (m2 !! i).
Proof. inversion 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
  m2 !! i = None  m1  m2  m1 !! i = None.
Proof.
216 217
  rewrite map_subseteq_spec, !eq_None_not_Some.
  intros Hm2 Hm [??]; destruct Hm2; eauto.
218 219
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
220 221
  m1 !! i = Some x  m1  m2  m2 !! i = Some y  x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
222 223 224 225 226 227 228 229 230
Lemma lookup_ne {A} (m : M A) i j : m !! i  m !! j  i  j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : ( i, m !! i = None)  m = .
Proof. intros Hm. apply map_eq. intros. by rewrite Hm, lookup_empty. Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some (( : M A) !! i).
Proof. rewrite lookup_empty. by inversion 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬ !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m  .
231 232 233
Proof.
  intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
234 235
Lemma map_fmap_empty {A B} (f : A  B) : f <$> ( : M A) = .
Proof. by apply map_eq; intros i; rewrite lookup_fmap, !lookup_empty. Qed.
236 237

(** ** Properties of the [partial_alter] operation *)
238 239 240
Lemma partial_alter_ext {A} (f g : option A  option A) (m : M A) i :
  ( x, m !! i = x  f x = g x)  partial_alter f i m = partial_alter g i m.
Proof.
241 242
  intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
243 244
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
245 246
  partial_alter (f  g) i m = partial_alter f i (partial_alter g i m).
Proof.
247 248
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
249
Qed.
250
Lemma partial_alter_commute {A} f g (m : M A) i j :
251
  i  j  partial_alter f i (partial_alter g j m) =
252 253
    partial_alter g j (partial_alter f i m).
Proof.
254 255 256 257
  intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
  { by rewrite lookup_partial_alter_ne,
      !lookup_partial_alter, lookup_partial_alter_ne. }
  destruct (decide (jj = i)) as [->|?].
258
  - by rewrite lookup_partial_alter,
259
     !lookup_partial_alter_ne, lookup_partial_alter by congruence.
260
  - by rewrite !lookup_partial_alter_ne by congruence.
261 262 263 264
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
  x = m !! i  partial_alter (λ _, x) i m = m.
Proof.
265 266
  intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
    rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
267
Qed.
268
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
269
Proof. by apply partial_alter_self_alt. Qed.
270
Lemma partial_alter_subseteq {A} f (m : M A) i :
271
  m !! i = None  m  partial_alter f i m.
272 273 274 275
Proof.
  rewrite map_subseteq_spec. intros Hi j x Hj.
  rewrite lookup_partial_alter_ne; congruence.
Qed.
276
Lemma partial_alter_subset {A} f (m : M A) i :
277
  m !! i = None  is_Some (f (m !! i))  m  partial_alter f i m.
278
Proof.
279 280 281 282
  intros Hi Hfi. split; [by apply partial_alter_subseteq|].
  rewrite !map_subseteq_spec. inversion Hfi as [x Hx]. intros Hm.
  apply (Some_ne_None x). rewrite <-(Hm i x); [done|].
  by rewrite lookup_partial_alter.
283 284 285
Qed.

(** ** Properties of the [alter] operation *)
286 287
Lemma alter_ext {A} (f g : A  A) (m : M A) i :
  ( x, m !! i = Some x  f x = g x)  alter f i m = alter g i m.
288
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
289
Lemma lookup_alter {A} (f : A  A) m i : alter f i m !! i = f <$> m !! i.
290
Proof. unfold alter. apply lookup_partial_alter. Qed.
291
Lemma lookup_alter_ne {A} (f : A  A) m i j : i  j  alter f i m !! j = m !! j.
292
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
293 294 295 296 297 298 299 300 301
Lemma alter_compose {A} (f g : A  A) (m : M A) i:
  alter (f  g) i m = alter f i (alter g i m).
Proof.
  unfold alter, map_alter. rewrite <-partial_alter_compose.
  apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A  A) (m : M A) i j :
  i  j  alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
302 303 304 305
Lemma lookup_alter_Some {A} (f : A  A) m i j y :
  alter f i m !! j = Some y 
    (i = j   x, m !! j = Some x  y = f x)  (i  j  m !! j = Some y).
Proof.
306
  destruct (decide (i = j)) as [->|?].
307
  - rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
308
  - rewrite lookup_alter_ne by done. naive_solver.
309 310 311 312
Qed.
Lemma lookup_alter_None {A} (f : A  A) m i j :
  alter f i m !! j = None  m !! j = None.
Proof.
313 314
  by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
315
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
316 317
Lemma alter_id {A} (f : A  A) m i :
  ( x, m !! i = Some x  f x = x)  alter f i m = m.
318
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
319
  intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
320
  { rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
Robbert Krebbers's avatar
Robbert Krebbers committed
321
  by rewrite lookup_alter_ne by done.
322 323 324 325 326 327 328 329 330 331 332
Qed.

(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i  j  delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
  delete i m !! j = Some y  i  j  m !! j = Some y.
Proof.
  split.
333
  - destruct (decide (i = j)) as [->|?];
334
      rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
335
  - intros [??]. by rewrite lookup_delete_ne.
336
Qed.
337 338 339
Lemma lookup_delete_is_Some {A} (m : M A) i j :
  is_Some (delete i m !! j)  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
340 341 342
Lemma lookup_delete_None {A} (m : M A) i j :
  delete i m !! j = None  i = j  m !! j = None.
Proof.
343 344
  destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
345 346 347
Qed.
Lemma delete_empty {A} i : delete i ( : M A) = .
Proof. rewrite <-(partial_alter_self ) at 2. by rewrite lookup_empty. Qed.
348
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} = .
349 350 351 352 353 354 355
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
  delete i (delete j m) = delete j (delete i m).
Proof. destruct (decide (i = j)). by subst. by apply partial_alter_commute. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
  i  j  delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
356
Lemma delete_notin {A} (m : M A) i : m !! i = None  delete i m = m.
357
Proof.
358 359
  intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
    rewrite ?lookup_delete, ?lookup_delete_ne.
360 361 362 363 364 365 366 367 368 369
Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
  m !! i = None  delete i (partial_alter f i m) = m.
Proof.
  intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
  unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
  m !! i = None  delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
370 371
Lemma insert_delete {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
372
Lemma delete_subseteq {A} (m : M A) i : delete i m  m.
373 374 375
Proof.
  rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
376
Lemma delete_subseteq_compat {A} (m1 m2 : M A) i :
377
  m1  m2  delete i m1  delete i m2.
378 379 380 381
Proof.
  rewrite !map_subseteq_spec. intros ? j x.
  rewrite !lookup_delete_Some. intuition eauto.
Qed.
382
Lemma delete_subset_alt {A} (m : M A) i x : m !! i = Some x  delete i m  m.
383
Proof.
384 385 386
  split; [apply delete_subseteq|].
  rewrite !map_subseteq_spec. intros Hi. apply (None_ne_Some x).
  by rewrite <-(lookup_delete m i), (Hi i x).
387
Qed.
388
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i)  delete i m  m.
389 390 391 392 393
Proof. inversion 1. eauto using delete_subset_alt. Qed.

(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
394
Lemma lookup_insert_rev {A}  (m : M A) i x y : <[i:=x]>m !! i = Some y  x = y.
395
Proof. rewrite lookup_insert. congruence. Qed.
396
Lemma lookup_insert_ne {A} (m : M A) i j x : i  j  <[i:=x]>m !! j = m !! j.
397
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
398 399
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
400 401 402 403 404 405 406
Lemma insert_commute {A} (m : M A) i j x y :
  i  j  <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
  <[i:=x]>m !! j = Some y  (i = j  x = y)  (i  j  m !! j = Some y).
Proof.
  split.
407
  - destruct (decide (i = j)) as [->|?];
408
      rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
409
  - intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
410
Qed.
411 412 413
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
  is_Some (<[i:=x]>m !! j)  i = j  i  j  is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
414 415 416
Lemma lookup_insert_None {A} (m : M A) i j x :
  <[i:=x]>m !! j = None  m !! j = None  i  j.
Proof.
417 418 419
  split; [|by intros [??]; rewrite lookup_insert_ne].
  destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
420
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
421
Lemma insert_id {A} (m : M A) i x : m !! i = Some x  <[i:=x]>m = m.
422 423 424 425 426 427 428 429
Proof.
  intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
    by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!Reflexive R} (m : M A) i x :
  ( y, m !! i = Some y  R y x)  map_included R m (<[i:=x]>m).
Proof.
  intros ? j; destruct (decide (i = j)) as [->|].
430 431
  - rewrite lookup_insert. destruct (m !! j); simpl; eauto.
  - rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
432
Qed.
433
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
434
Proof. apply partial_alter_subseteq. Qed.
435
Lemma insert_subset {A} (m : M A) i x : m !! i = None  m  <[i:=x]>m.
436 437
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
438
  m1 !! i = None  m1  m2  m1  <[i:=x]>m2.
439
Proof.
440 441 442
  rewrite !map_subseteq_spec. intros ?? j ?.
  destruct (decide (j = i)) as [->|?]; [congruence|].
  rewrite lookup_insert_ne; auto.
443 444
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
445
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
446
Proof.
447 448 449 450
  rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
  destruct (decide (i = j)) as [->|]; [congruence|].
  rewrite lookup_delete_ne by done.
  apply Hix; by rewrite lookup_insert_ne by done.
451 452
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
453
  m1 !! i = Some x  delete i m1  m2  m1  <[i:=x]> m2.
454
Proof.
455 456
  rewrite !map_subseteq_spec.
  intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
457 458
  - rewrite lookup_insert. congruence.
  - rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
459 460
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
461
  m1 !! i = None  <[i:=x]> m1  m2  m1  delete i m2.
462
Proof.
463 464 465
  intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
  contradict Hm21. apply delete_insert_subseteq; auto.
  eapply lookup_weaken, Hm12. by rewrite lookup_insert.
466 467
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
468
  m1 !! i = None  <[i:=x]> m1  m2 
469 470
   m2', m2 = <[i:=x]>m2'  m1  m2'  m2' !! i = None.
Proof.
471
  intros Hi Hm1m2. exists (delete i m2). split_and?.
472 473
  - rewrite insert_delete, insert_id. done.
    eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
474 475
  - eauto using insert_delete_subset.
  - by rewrite lookup_delete.
476
Qed.
477
Lemma insert_empty {A} i (x : A) : <[i:=x]> = {[i := x]}.
478
Proof. done. Qed.
479 480 481 482
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m  .
Proof.
  intros Hi%(f_equal (!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
483 484 485

(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
486
  {[i := x]} !! j = Some y  i = j  x = y.
487
Proof.
488
  rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
489
Qed.
490
Lemma lookup_singleton_None {A} i j (x : A) : {[i := x]} !! j = None  i  j.
491
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
492
Lemma lookup_singleton {A} i (x : A) : {[i := x]} !! i = Some x.
493
Proof. by rewrite lookup_singleton_Some. Qed.
494
Lemma lookup_singleton_ne {A} i j (x : A) : i  j  {[i := x]} !! j = None.
495
Proof. by rewrite lookup_singleton_None. Qed.
496
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]}  .
497 498 499 500
Proof.
  intros Hix. apply (f_equal (!! i)) in Hix.
  by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
501
Lemma insert_singleton {A} i (x y : A) : <[i:=y]>{[i := x]} = {[i := y]}.
502
Proof.
503
  unfold singletonM, map_singleton, insert, map_insert.
504 505
  by rewrite <-partial_alter_compose.
Qed.
506
Lemma alter_singleton {A} (f : A  A) i x : alter f i {[i := x]} = {[i := f x]}.
507
Proof.
508
  intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
509 510
  - by rewrite lookup_alter, !lookup_singleton.
  - by rewrite lookup_alter_ne, !lookup_singleton_ne.
511 512
Qed.
Lemma alter_singleton_ne {A} (f : A  A) i j x :
513
  i  j  alter f i {[j := x]} = {[j := x]}.
514
Proof.
515 516
  intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
    rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
517
Qed.
518 519
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]}  .
Proof. apply insert_non_empty. Qed.
520

521 522 523 524 525
(** ** Properties of the map operations *)
Lemma fmap_empty {A B} (f : A  B) : f <$>  = .
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A  option B) : omap f  = .
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
526 527 528
Lemma fmap_insert {A B} (f: A  B) m i x: f <$> <[i:=x]>m = <[i:=f x]>(f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
529 530
  - by rewrite lookup_fmap, !lookup_insert.
  - by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
531
Qed.
532 533 534 535 536 537
Lemma fmap_delete {A B} (f: A  B) m i: f <$> delete i m = delete i (f <$> m).
Proof.
  apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
  - by rewrite lookup_fmap, !lookup_delete.
  - by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
538 539 540 541
Lemma omap_insert {A B} (f : A  option B) m i x y :
  f x = Some y  omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof.
  intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
542 543
  - by rewrite lookup_omap, !lookup_insert.
  - by rewrite lookup_omap, !lookup_insert_ne, lookup_omap by done.
544
Qed.
545
Lemma map_fmap_singleton {A B} (f : A  B) i x : f <$> {[i := x]} = {[i := f x]}.
546 547 548
Proof.
  by unfold singletonM, map_singleton; rewrite fmap_insert, map_fmap_empty.
Qed.
549
Lemma omap_singleton {A B} (f : A  option B) i x y :
550
  f x = Some y  omap f {[ i := x ]} = {[ i := y ]}.
551
Proof.
552 553
  intros. unfold singletonM, map_singleton.
  by erewrite omap_insert, omap_empty by eauto.
554
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
555 556 557 558 559
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A  B) (g : B  C) (m : M A) :
  g  f <$> m = g <$> f <$> m.
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
560
Lemma map_fmap_equiv_ext `{Equiv A, Equiv B} (f1 f2 : A  B) m :
561 562 563 564 565
  ( i x, m !! i = Some x  f1 x  f2 x)  f1 <$> m  f2 <$> m.
Proof.
  intros Hi i; rewrite !lookup_fmap.
  destruct (m !! i) eqn:?; constructor; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
566 567 568 569 570 571
Lemma map_fmap_ext {A B} (f1 f2 : A  B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  f1 <$> m = f2 <$> m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
572 573 574 575 576 577
Lemma omap_ext {A B} (f1 f2 : A  option B) m :
  ( i x, m !! i = Some x  f1 x = f2 x)  omap f1 m = omap f2 m.
Proof.
  intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
  by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
578

579 580
(** ** Properties of conversion to lists *)
Lemma map_to_list_unique {A} (m : M A) i x y :
581
  (i,x)  map_to_list m  (i,y)  map_to_list m  x = y.
582
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
583
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
584
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
585 586 587 588 589
Lemma elem_of_map_of_list_1_help {A} (l : list (K * A)) i x :
  (i,x)  l  ( y, (i,y)  l  y = x)  map_of_list l !! i = Some x.
Proof.
  induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
  setoid_rewrite elem_of_cons.
590
  intros [?|?] Hdup; simplify_eq; [by rewrite lookup_insert|].
591
  destruct (decide (i = j)) as [->|].
592 593
  - rewrite lookup_insert; f_equal; eauto.
  - rewrite lookup_insert_ne by done; eauto.
594
Qed.
595
Lemma elem_of_map_of_list_1 {A} (l : list (K * A)) i x :
596
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
597
Proof.
598 599
  intros ? Hx; apply elem_of_map_of_list_1_help; eauto using NoDup_fmap_fst.
  intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
600
  cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
601
    by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
602 603
Qed.
Lemma elem_of_map_of_list_2 {A} (l : list (K * A)) i x :
604
  map_of_list l !! i = Some x  (i,x)  l.
605
Proof.
606 607 608
  induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
  rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
    rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
609 610
Qed.
Lemma elem_of_map_of_list {A} (l : list (K * A)) i x :
611
  NoDup (l.*1)  (i,x)  l  map_of_list l !! i = Some x.
612
Proof. split; auto using elem_of_map_of_list_1, elem_of_map_of_list_2. Qed.
613
Lemma not_elem_of_map_of_list_1 {A} (l : list (K * A)) i :
614
  i  l.*1  map_of_list l !! i = None.
615
Proof.
616 617
  rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
  exists (i,x); simpl; auto using elem_of_map_of_list_2.
618 619
Qed.
Lemma not_elem_of_map_of_list_2 {A} (l : list (K * A)) i :
620
  map_of_list l !! i = None  i  l.*1.
621
Proof.
622
  induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
623
  rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
624 625
  - by rewrite lookup_insert.
  - by rewrite lookup_insert_ne; intuition.
626 627
Qed.
Lemma not_elem_of_map_of_list {A} (l : list (K * A)) i :
628
  i  l.*1  map_of_list l !! i = None.
629
Proof. red; auto using not_elem_of_map_of_list_1,not_elem_of_map_of_list_2. Qed.
630
Lemma map_of_list_proper {A} (l1 l2 : list (K * A)) :
631
  NoDup (l1.*1)  l1  l2  map_of_list l1 = map_of_list l2.
632 633 634 635 636
Proof.
  intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-!elem_of_map_of_list; rewrite <-?Hperm.
Qed.
Lemma map_of_list_inj {A} (l1 l2 : list (K * A)) :
637
  NoDup (l1.*1)  NoDup (l2.*1)  map_of_list l1 = map_of_list l2  l1  l2.
638
Proof.
639
  intros ?? Hl1l2. apply NoDup_Permutation; auto using (NoDup_fmap_1 fst).
640 641
  intros [i x]. by rewrite !elem_of_map_of_list, Hl1l2.
Qed.
642
Lemma map_of_to_list {A} (m : M A) : map_of_list (map_to_list m) = m.
643 644 645
Proof.
  apply map_eq. intros i. apply option_eq. intros x.
  by rewrite <-elem_of_map_of_list, elem_of_map_to_list
646
    by auto using NoDup_fst_map_to_list.
647 648
Qed.
Lemma map_to_of_list {A} (l : list (K * A)) :
649
  NoDup (l.*1)  map_to_list (map_of_list l)  l.
650
Proof. auto using map_of_list_inj, NoDup_fst_map_to_list, map_of_to_list. Qed.
651
Lemma map_to_list_inj {A} (m1 m2 : M A) :
652
  map_to_list m1  map_to_list m2  m1 = m2.
653
Proof.
654
  intros. rewrite <-(map_of_to_list m1), <-(map_of_to_list m2).
655
  auto using map_of_list_proper, NoDup_fst_map_to_list.
656
Qed.
657 658 659 660 661 662
Lemma map_to_of_list_flip {A} (m1 : M A) l2 :
  map_to_list m1  l2  m1 = map_of_list l2.
Proof.
  intros. rewrite <-(map_of_to_list m1).
  auto using map_of_list_proper, NoDup_fst_map_to_list.
Qed.
663 664 665 666 667 668 669 670 671 672 673 674 675

Lemma map_of_list_nil {A} : map_of_list (@nil (K * A)) = .
Proof. done. Qed.
Lemma map_of_list_cons {A} (l : list (K * A)) i x :
  map_of_list ((i, x) :: l) = <[i:=x]>(map_of_list l).
Proof. done. Qed.
Lemma map_of_list_fmap {A B} (f : A  B) l :
  map_of_list (prod_map id f <$> l) = f <$> map_of_list l.
Proof.
  induction l as [|[i x] l IH]; csimpl; rewrite ?fmap_empty; auto.
  rewrite <-map_of_list_cons; simpl. by rewrite IH, <-fmap_insert.
Qed.

676
Lemma map_to_list_empty {A} : map_to_list  = @nil (K * A).
677 678 679 680 681
Proof.
  apply elem_of_nil_inv. intros [i x].
  rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
682
  m !! i = None  map_to_list (<[i:=x]>m)  (i,x) :: map_to_list m.
683
Proof.
684
  intros. apply map_of_list_inj; csimpl.
685 686
  - apply NoDup_fst_map_to_list.
  - constructor; auto using NoDup_fst_map_to_list.
687
    rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
688
    rewrite elem_of_map_to_list in Hlookup. congruence.
689
  - by rewrite !map_of_to_list.
690
Qed.
691 692 693 694 695 696
Lemma map_to_list_singleton {A} i (x : A) : map_to_list {[i:=x]} = [(i,x)].
Proof.
  apply Permutation_singleton. unfold singletonM, map_singleton.
  by rewrite map_to_list_insert, map_to_list_empty by auto using lookup_empty.
Qed.

697 698 699 700 701 702
Lemma map_to_list_contains {A} (m1 m2 : M A) :
  m1  m2  map_to_list m1 `contains` map_to_list m2.
Proof.
  intros; apply NoDup_contains; auto using NoDup_map_to_list.
  intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
703 704 705 706 707 708 709 710 711 712
Lemma map_to_list_fmap {A B} (f : A  B) m :
  map_to_list (f <$> m)  prod_map id f <$> map_to_list m.
Proof.
  assert (NoDup ((prod_map id f <$> map_to_list m).*1)).
  { erewrite <-list_fmap_compose, (list_fmap_ext _ fst) by done.
    apply NoDup_fst_map_to_list. }
  rewrite <-(map_of_to_list m) at 1.
  by rewrite <-map_of_list_fmap, map_to_of_list.
Qed.

713
Lemma map_to_list_empty_inv_alt {A}  (m : M A) : map_to_list m  []  m = .
714
Proof. rewrite <-map_to_list_empty. apply map_to_list_inj. Qed.
715
Lemma map_to_list_empty_inv {A} (m : M A) : map_to_list m = []  m = .
716
Proof. intros Hm. apply map_to_list_empty_inv_alt. by rewrite Hm. Qed.
717 718 719 720 721
Lemma map_to_list_empty' {A} (m : M A) : map_to_list m = []  m = .