numbers.v 17.6 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
(* This file is distributed under the terms of the BSD license. *)
3
4
5
(** This file collects some trivial facts on the Coq types [nat] and [N] for
natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
6
Require Export Eqdep PArith NArith ZArith NPeano.
7
Require Import Qcanon.
8
Require Export base decidable.
9
Open Scope nat_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11
12
Coercion Z.of_nat : nat >-> Z.

13
(** * Notations and properties of [nat] *)
14
15
16
17
18
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).

19
Infix "≤" := le : nat_scope.
20
21
22
23
24
25
26
27
28
29
Notation "x ≤ y ≤ z" := (x  y  y  z)%nat : nat_scope.
Notation "x ≤ y < z" := (x  y  y < z)%nat : nat_scope.
Notation "x < y < z" := (x < y  y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y  y  z)%nat : nat_scope.
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.

Infix "`div`" := NPeano.div (at level 35) : nat_scope.
Infix "`mod`" := NPeano.modulo (at level 35) : nat_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
30
Instance nat_eq_dec:  x y : nat, Decision (x = y) := eq_nat_dec.
31
32
Instance nat_le_dec:  x y : nat, Decision (x  y) := le_dec.
Instance nat_lt_dec:  x y : nat, Decision (x < y) := lt_dec.
33
Instance nat_inhabited: Inhabited nat := populate 0%nat.
34
35
36
37
Instance: Injective (=) (=) S.
Proof. by injection 1. Qed.
Instance: PartialOrder ().
Proof. repeat split; repeat intro; auto with lia. Qed.
38

39
40
41
42
43
44
Instance nat_le_pi:  x y : nat, ProofIrrel (x  y).
Proof.
  assert ( x y (p : x  y) y' (q : x  y'),
    y = y'  eq_dep nat (le x) y p y' q) as aux.
  { fix 3. intros x ? [|y p] ? [|y' q].
    * done.
45
46
    * clear nat_le_pi. intros; exfalso; auto with lia.
    * clear nat_le_pi. intros; exfalso; auto with lia.
47
48
49
50
51
52
53
    * injection 1. intros Hy. by case (nat_le_pi x y p y' q Hy). }
  intros x y p q.
  by apply (eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Instance nat_lt_pi:  x y : nat, ProofIrrel (x < y).
Proof. apply _. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
54
55
56
57
58
59
60
61
Definition sum_list_with {A} (f : A  nat) : list A  nat :=
  fix go l :=
  match l with
  | [] => 0
  | x :: l => f x + go l
  end.
Notation sum_list := (sum_list_with id).

62
63
64
Lemma Nat_lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma Nat_mul_split_l n x1 x2 y1 y2 :
65
66
  x2 < n  y2 < n  x1 * n + x2 = y1 * n + y2  x1 = y1  x2 = y2.
Proof.
67
  intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
68
69
  revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
70
71
72
Lemma Nat_mul_split_r n x1 x2 y1 y2 :
  x1 < n  y1 < n  x1 + x2 * n = y1 + y2 * n  x1 = y1  x2 = y2.
Proof. intros. destruct (Nat_mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
73

74
75
76
(** * Notations and properties of [positive] *)
Open Scope positive_scope.

77
78
79
80
81
82
83
Infix "≤" := Pos.le : positive_scope.
Notation "x ≤ y ≤ z" := (x  y  y  z)%positive : positive_scope.
Notation "x ≤ y < z" := (x  y  y < z)%positive : positive_scope.
Notation "x < y < z" := (x < y  y < z)%positive : positive_scope.
Notation "x < y ≤ z" := (x < y  y  z)%positive : positive_scope.
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
84
85
86
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.

87
88
89
90
Arguments Pos.of_nat _ : simpl never.
Instance positive_eq_dec:  x y : positive, Decision (x = y) := Pos.eq_dec.
Instance positive_inhabited: Inhabited positive := populate 1.

91
Instance: Injective (=) (=) (~0).
Robbert Krebbers's avatar
Robbert Krebbers committed
92
Proof. by injection 1. Qed.
93
Instance: Injective (=) (=) (~1).
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
Proof. by injection 1. Qed.

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint Papp (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => (Papp p1 p2)~0
  | p2~1 => (Papp p1 p2)~1
  end.
Infix "++" := Papp : positive_scope.
Notation "(++)" := Papp (only parsing) : positive_scope.
Notation "( p ++)" := (Papp p) (only parsing) : positive_scope.
Notation "(++ q )" := (λ p, Papp p q) (only parsing) : positive_scope.

Fixpoint Preverse_go (p1 p2 : positive) : positive :=
  match p2 with
  | 1 => p1
  | p2~0 => Preverse_go (p1~0) p2
  | p2~1 => Preverse_go (p1~1) p2
  end.
Definition Preverse : positive  positive := Preverse_go 1.

Global Instance: LeftId (=) 1 (++).
Proof. intros p. induction p; simpl; intros; f_equal; auto. Qed.
Global Instance: RightId (=) 1 (++).
Proof. done. Qed.
Global Instance: Associative (=) (++).
Proof. intros ?? p. induction p; simpl; intros; f_equal; auto. Qed.
Global Instance:  p : positive, Injective (=) (=) (++ p).
Proof. intros p ???. induction p; simplify_equality; auto. Qed.

Lemma Preverse_go_app_cont p1 p2 p3 :
  Preverse_go (p2 ++ p1) p3 = p2 ++ Preverse_go p1 p3.
Proof.
  revert p1. induction p3; simpl; intros.
  * apply (IHp3 (_~1)).
  * apply (IHp3 (_~0)).
  * done.
Qed.
Lemma Preverse_go_app p1 p2 p3 :
  Preverse_go p1 (p2 ++ p3) = Preverse_go p1 p3 ++ Preverse_go 1 p2.
Proof.
  revert p1. induction p3; intros p1; simpl; auto.
  by rewrite <-Preverse_go_app_cont.
Qed.
Lemma Preverse_app p1 p2 :
  Preverse (p1 ++ p2) = Preverse p2 ++ Preverse p1.
Proof. unfold Preverse. by rewrite Preverse_go_app. Qed.

Lemma Preverse_xO p : Preverse (p~0) = (1~0) ++ Preverse p.
Proof Preverse_app p (1~0).
Lemma Preverse_xI p : Preverse (p~1) = (1~1) ++ Preverse p.
Proof Preverse_app p (1~1).

Fixpoint Plength (p : positive) : nat :=
  match p with
  | 1 => 0%nat
  | p~0 | p~1 => S (Plength p)
  end.
Lemma Papp_length p1 p2 :
  Plength (p1 ++ p2) = (Plength p2 + Plength p1)%nat.
Proof. induction p2; simpl; f_equal; auto. Qed.

Close Scope positive_scope.

(** * Notations and properties of [N] *)
Robbert Krebbers's avatar
Robbert Krebbers committed
162
Infix "≤" := N.le : N_scope.
163
164
165
166
Notation "x ≤ y ≤ z" := (x  y  y  z)%N : N_scope.
Notation "x ≤ y < z" := (x  y  y < z)%N : N_scope.
Notation "x < y < z" := (x < y  y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y  y  z)%N : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
Notation "(≤)" := N.le (only parsing) : N_scope.
168
Notation "(<)" := N.lt (only parsing) : N_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
169

170
171
172
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
173
174
175
Instance: Injective (=) (=) Npos.
Proof. by injection 1. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
176
177
178
179
180
181
182
Instance N_eq_dec:  x y : N, Decision (x = y) := N.eq_dec.
Program Instance N_le_dec (x y : N) : Decision (x  y)%N :=
  match Ncompare x y with
  | Gt => right _
  | _ => left _
  end.
Next Obligation. congruence. Qed.
183
184
185
186
187
188
Program Instance N_lt_dec (x y : N) : Decision (x < y)%N :=
  match Ncompare x y with
  | Lt => left _
  | _ => right _
  end.
Next Obligation. congruence. Qed.
189
Instance N_inhabited: Inhabited N := populate 1%N.
190
191
192
193
194
Instance: PartialOrder ()%N.
Proof.
  repeat split; red. apply N.le_refl. apply N.le_trans. apply N.le_antisymm.
Qed.
Hint Extern 0 (_  _)%N => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
195

196
(** * Notations and properties of [Z] *)
197
198
Open Scope Z_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
199
Infix "≤" := Z.le : Z_scope.
200
201
202
203
Notation "x ≤ y ≤ z" := (x  y  y  z) : Z_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Z_scope.
Notation "x < y < z" := (x < y  y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
204
Notation "(≤)" := Z.le (only parsing) : Z_scope.
205
Notation "(<)" := Z.lt (only parsing) : Z_scope.
206

Robbert Krebbers's avatar
Robbert Krebbers committed
207
208
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
209
210
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
211
212
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
213

Robbert Krebbers's avatar
Robbert Krebbers committed
214
Instance Z_eq_dec:  x y : Z, Decision (x = y) := Z.eq_dec.
215
216
217
Instance Z_le_dec:  x y : Z, Decision (x  y) := Z_le_dec.
Instance Z_lt_dec:  x y : Z, Decision (x < y) := Z_lt_dec.
Instance Z_inhabited: Inhabited Z := populate 1.
218
219
220
221
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Z.le_refl. apply Z.le_trans. apply Z.le_antisymm.
Qed.
222
223
224
225
226
227
228
229
230
231
232
233

Lemma Z_pow_pred_r n m : 0 < m  n * n ^ (Z.pred m) = n ^ m.
Proof.
  intros. rewrite <-Z.pow_succ_r, Z.succ_pred. done. by apply Z.lt_le_pred.
Qed.
Lemma Z_quot_range_nonneg k x y : 0  x < k  0 < y  0  x `quot` y < k.
Proof.
  intros [??] ?.
  destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
  destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
  split. apply Z.quot_pos; lia. transitivity x; auto. apply Z.quot_lt; lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
234

235
(* Note that we cannot disable simpl for [Z.of_nat] as that would break
236
tactics as [lia]. *)
237
238
239
240
241
242
243
244
245
246
Arguments Z.to_nat _ : simpl never.
Arguments Z.mul _ _ : simpl never.
Arguments Z.add _ _ : simpl never.
Arguments Z.opp _ : simpl never.
Arguments Z.pow _ _ : simpl never.
Arguments Z.div _ _ : simpl never.
Arguments Z.modulo _ _ : simpl never.
Arguments Z.quot _ _ : simpl never.
Arguments Z.rem _ _ : simpl never.

247
Lemma Z_mod_pos a b : 0 < b  0  a `mod` b.
248
249
250
251
252
Proof. apply Z.mod_pos_bound. Qed.

Hint Resolve Z.lt_le_incl : zpos.
Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
253
254
Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Hint Resolve Z_mod_pos Z.div_pos : zpos.
255
256
Hint Extern 1000 => lia : zpos.

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
Lemma Z2Nat_inj_pow (x y : nat) : Z.of_nat (x ^ y) = x ^ y.
Proof.
  induction y as [|y IH].
  * by rewrite Z.pow_0_r, Nat.pow_0_r.
  * by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
      Nat2Z.inj_mul, IH by auto with zpos.
Qed.
Lemma Z2Nat_inj_div x y : Z.of_nat (x `div` y) = x `div` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.div_unique with (x `mod` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma Z2Nat_inj_mod x y : Z.of_nat (x `mod` y) = x `mod` y.
Proof.
  destruct (decide (y = 0%nat)); [by subst; destruct x |].
  apply Z.mod_unique with (x `div` y)%nat.
  { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
    apply Nat.mod_bound_pos; lia. }
  by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Close Scope Z_scope.

282
(** * Notations and properties of [Qc] *)
283
284
Open Scope Qc_scope.
Notation "2" := (1+1) : Qc_scope.
285
Infix "≤" := Qcle : Qc_scope.
286
287
288
289
Notation "x ≤ y ≤ z" := (x  y  y  z) : Qc_scope.
Notation "x ≤ y < z" := (x  y  y < z) : Qc_scope.
Notation "x < y < z" := (x < y  y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y  y  z) : Qc_scope.
290
291
292
293
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.

Instance Qc_eq_dec:  x y : Qc, Decision (x = y) := Qc_eq_dec.
294
Program Instance Qc_le_dec (x y : Qc) : Decision (x  y) :=
295
296
  if Qclt_le_dec y x then right _ else left _.
Next Obligation. by apply Qclt_not_le. Qed.
297
Program Instance Qc_lt_dec (x y : Qc) : Decision (x < y) :=
298
299
300
  if Qclt_le_dec x y then left _ else right _.
Next Obligation. by apply Qcle_not_lt. Qed.

301
302
303
304
305
306
307
308
Instance: PartialOrder ().
Proof.
  repeat split; red. apply Qcle_refl. apply Qcle_trans. apply Qcle_antisym.
Qed.
Instance: StrictOrder (<).
Proof.
  split; red. intros x Hx. by destruct (Qclt_not_eq x x). apply Qclt_trans.
Qed.
309

310
Lemma Qcle_ngt (x y : Qc) : x  y  ¬y < x.
311
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
312
Lemma Qclt_nge (x y : Qc) : x < y  ¬y  x.
313
314
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.

315
Lemma Qcplus_le_mono_l (x y z : Qc) : x  y  z + x  z + y.
316
317
318
Proof.
  split; intros.
  * by apply Qcplus_le_compat.
319
320
  * replace x with ((0 - z) + (z + x)) by ring.
    replace y with ((0 - z) + (z + y)) by ring.
321
322
    by apply Qcplus_le_compat.
Qed.
323
Lemma Qcplus_le_mono_r (x y z : Qc) : x  y  x + z  y + z.
324
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
325
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y  z + x < z + y.
326
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
327
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y  x + z < y + z.
328
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
Instance: Injective (=) (=) Qcopp.
Proof.
  intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
Instance: Injective (=) (=) (Qcplus z).
Proof.
  intros z x y H. by apply (anti_symmetric ());
    rewrite (Qcplus_le_mono_l _ _ z), H.
Qed.

Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x  0  y  0 < x + y.
Proof.
  intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0  x  0 < y  0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed. 
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x  0 < y  0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0  x  0  y  0  x + y.
Proof.
  intros. transitivity (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.

Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0  y  0  x + y < 0.
Proof.
  intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x  0  y < 0  x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0  y < 0  x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x  0  y  0  x + y  0.
Proof.
  intros. transitivity (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Close Scope Qc_scope.
369

370
(** * Conversions *)
371
Lemma Z_to_nat_nonpos x : (x  0)%Z  Z.to_nat x = 0.
372
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
373

374
375
(** The function [Z_to_option_N] converts an integer [x] into a natural number
by giving [None] in case [x] is negative. *)
376
Definition Z_to_option_N (x : Z) : option N :=
Robbert Krebbers's avatar
Robbert Krebbers committed
377
  match x with
378
  | Z0 => Some N0 | Zpos p => Some (Npos p) | Zneg _ => None
Robbert Krebbers's avatar
Robbert Krebbers committed
379
  end.
380
381
Definition Z_to_option_nat (x : Z) : option nat :=
  match x with
382
  | Z0 => Some 0 | Zpos p => Some (Pos.to_nat p) | Zneg _ => None
383
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
Lemma Z_to_option_N_Some x y :
  Z_to_option_N x = Some y  (0  x)%Z  y = Z.to_N x.
Proof.
  split.
  * intros. by destruct x; simpl in *; simplify_equality;
      auto using Zle_0_pos.
  * intros [??]. subst. destruct x; simpl; auto; lia.
Qed.
Lemma Z_to_option_N_Some_alt x y :
  Z_to_option_N x = Some y  (0  x)%Z  x = Z.of_N y.
Proof.
  rewrite Z_to_option_N_Some.
  split; intros [??]; subst; auto using N2Z.id, Z2N.id, eq_sym.
Qed.

Lemma Z_to_option_nat_Some x y :
  Z_to_option_nat x = Some y  (0  x)%Z  y = Z.to_nat x.
Proof.
  split.
  * intros. by destruct x; simpl in *; simplify_equality;
      auto using Zle_0_pos.
  * intros [??]. subst. destruct x; simpl; auto; lia.
Qed.
Lemma Z_to_option_nat_Some_alt x y :
  Z_to_option_nat x = Some y  (0  x)%Z  x = Z.of_nat y.
Proof.
  rewrite Z_to_option_nat_Some.
  split; intros [??]; subst; auto using Nat2Z.id, Z2Nat.id, eq_sym.
Qed.
414
Lemma Z_to_option_of_nat x : Z_to_option_nat (Z.of_nat x) = Some x.
415
416
417
418
Proof. apply Z_to_option_nat_Some_alt. auto using Nat2Z.is_nonneg. Qed.

(** The function [Z_of_sumbool] converts a sumbool [P] into an integer
by yielding one if [P] and zero if [Q]. *)
419
Definition Z_of_sumbool {P Q : Prop} (p : {P} + {Q} ) : Z :=
420
  (if p then 1 else 0)%Z.
421
422
423
424
425
426
427
428
429
430
431
432
433
434

(** Some correspondence lemmas between [nat] and [N] that are not part of the
standard library. We declare a hint database [natify] to rewrite a goal
involving [N] into a corresponding variant involving [nat]. *)
Lemma N_to_nat_lt x y : N.to_nat x < N.to_nat y  (x < y)%N.
Proof. by rewrite <-N.compare_lt_iff, nat_compare_lt, N2Nat.inj_compare. Qed.
Lemma N_to_nat_le x y : N.to_nat x  N.to_nat y  (x  y)%N.
Proof. by rewrite <-N.compare_le_iff, nat_compare_le, N2Nat.inj_compare. Qed.
Lemma N_to_nat_0 : N.to_nat 0 = 0.
Proof. done. Qed.
Lemma N_to_nat_1 : N.to_nat 1 = 1.
Proof. done. Qed.
Lemma N_to_nat_div x y : N.to_nat (x `div` y) = N.to_nat x `div` N.to_nat y.
Proof.
435
436
  destruct (decide (y = 0%N)); [by subst; destruct x |].
  apply Nat.div_unique with (N.to_nat (x `mod` y)).
437
438
439
440
441
442
  { by apply N_to_nat_lt, N.mod_lt. }
  rewrite (N.div_unique_exact (x * y) y x), N.div_mul by lia.
  by rewrite <-N2Nat.inj_mul, <-N2Nat.inj_add, <-N.div_mod.
Qed.
(* We have [x `mod` 0 = 0] on [nat], and [x `mod` 0 = x] on [N]. *)
Lemma N_to_nat_mod x y :
443
  y  0%N  N.to_nat (x `mod` y) = N.to_nat x `mod` N.to_nat y.
444
Proof.
445
  intros. apply Nat.mod_unique with (N.to_nat (x `div` y)).
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
  { by apply N_to_nat_lt, N.mod_lt. }
  rewrite (N.div_unique_exact (x * y) y x), N.div_mul by lia.
  by rewrite <-N2Nat.inj_mul, <-N2Nat.inj_add, <-N.div_mod.
Qed.

Hint Rewrite <-N2Nat.inj_iff : natify.
Hint Rewrite <-N_to_nat_lt : natify.
Hint Rewrite <-N_to_nat_le : natify.
Hint Rewrite Nat2N.id : natify.
Hint Rewrite N2Nat.inj_add : natify.
Hint Rewrite N2Nat.inj_mul : natify.
Hint Rewrite N2Nat.inj_sub : natify.
Hint Rewrite N2Nat.inj_succ : natify.
Hint Rewrite N2Nat.inj_pred : natify.
Hint Rewrite N_to_nat_div : natify.
Hint Rewrite N_to_nat_0 : natify.
Hint Rewrite N_to_nat_1 : natify.
Ltac natify := repeat autorewrite with natify in *.

Hint Extern 100 (Nlt _ _) => natify : natify.
Hint Extern 100 (Nle _ _) => natify : natify.
Hint Extern 100 (@eq N _ _) => natify : natify.
Hint Extern 100 (lt _ _) => natify : natify.
Hint Extern 100 (le _ _) => natify : natify.
Hint Extern 100 (@eq nat _ _) => natify : natify.

Instance:  x, PropHolds (0 < x)%N  PropHolds (0 < N.to_nat x).
Proof. unfold PropHolds. intros. by natify. Qed.
Instance:  x, PropHolds (0  x)%N  PropHolds (0  N.to_nat x).
Proof. unfold PropHolds. intros. by natify. Qed.