base.v 41.9 KB
Newer Older
1
(* Copyright (c) 2012-2013, Robbert Krebbers. *)
2
3
4
5
6
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
9
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
Robbert Krebbers's avatar
Robbert Krebbers committed
10

11
12
13
(** * General *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
14
15
16
17
18
19
20
21
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).

(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
22

23
24
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
25
Arguments id _ _ /.
26
Arguments compose _ _ _ _ _ _ /.
27
Arguments flip _ _ _ _ _ _ /.
28
29
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
30

31
32
33
34
(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
35
36
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
37

38
39
40
Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

41
42
(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
43
44
45
Delimit Scope C_scope with C.
Global Open Scope C_scope.

46
(** Introduce some Haskell style like notations. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
47
48
49
50
51
52
53
54
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.
55
Hint Extern 100 (_  _) => discriminate.
Robbert Krebbers's avatar
Robbert Krebbers committed
56

57
58
59
60
Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

61
Notation "t $ r" := (t r)
62
  (at level 65, right associativity, only parsing) : C_scope.
63
64
65
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
66
67
68
69
Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.
70

71
72
73
74
75
76
77
78
79
80
81
82
Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

99
100
(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
101
Arguments proj1_sig {_ _} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
103
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
104

105
106
107
108
(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
109
110
Class PropHolds (P : Prop) := prop_holds: P.

111
112
Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
113
Proof. repeat intro; trivial. Qed.
114
115
116

Ltac solve_propholds :=
  match goal with
117
118
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
119
120
121
122
123
124
125
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

129
130
131
132
133
134
135
136
137
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
138
  match iA, iB with populate x, populate y => populate (x,y) end.
139
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
140
  match iA with populate x => populate (inl x) end.
141
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
142
  match iB with populate y => populate (inl y) end.
143
144
Instance option_inhabited {A} : Inhabited (option A) := populate None.

145
146
147
148
149
150
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

151
152
153
(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Robbert Krebbers's avatar
Robbert Krebbers committed
154
155
156
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
157
158
159
160
161
162
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
    setoid_rewrite (leibniz_equiv (A:=A)) in H
  | |- context [ @equiv ?A _ _ _ ] =>
    setoid_rewrite (leibniz_equiv (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv (A:=A)) in H
  | |- context [ @eq ?A _ _ ] =>
    setoid_rewrite <-(leibniz_equiv (A:=A))
  end.

185
186
187
188
189
190
191
192
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
193
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
194
195
Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.
Robbert Krebbers's avatar
Robbert Krebbers committed
196

197
(** ** Operations on collections *)
198
(** We define operational type classes for the traditional operations and
199
relations on collections: the empty collection [∅], the union [(∪)],
200
201
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
204
205
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: A  A  A.
206
Instance: Params (@union) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
207
208
209
210
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
211
212
213
214
215
216
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
217

218
Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
219
220
221
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
222
Class Intersection A := intersection: A  A  A.
223
Instance: Params (@intersection) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
225
226
227
228
229
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
230
Instance: Params (@difference) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
231
232
233
234
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
235
236
237
238
239
240
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
241

242
243
Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
244
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
245
Notation "{[ x ; y ; .. ; z ]}" :=
246
247
248
249
250
251
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.
252

253
Class SubsetEq A := subseteq: relation A.
254
Instance: Params (@subseteq) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
255
256
257
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
258
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
260
261
262
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
263
264
265
266
267
268
269
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
270

271
Hint Extern 0 (_  _) => reflexivity.
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

Class SubsetEqE E A := subseteqE: E  relation A.
Instance: Params (@subseteqE) 4.
Notation "X ⊆{ Γ } Y" := (subseteqE Γ X Y)
  (at level 70, format "X  ⊆{ Γ }  Y") : C_scope.
Notation "(⊆{ Γ } )" := (subseteqE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "X ⊈{ Γ } Y" := (¬X {Γ} Y)
  (at level 70, format "X  ⊈{ Γ }  Y") : C_scope.
Notation "(⊈{ Γ } )" := (λ X Y, X {Γ} Y)
  (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊆{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ }*  Ys") : C_scope.
Notation "(⊆{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊆{ Γ1 , Γ2 , .. , Γ3 } Y" :=
  (subseteqE (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "'[' X  ⊆{ Γ1 , Γ2 , .. , Γ3 }  '/' Y ']'") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 } )" := (subseteqE (pair .. (Γ1, Γ2) .. Γ3))
  (only parsing, Γ1 at level 1) : C_scope.
Notation "X ⊈{ Γ1 , Γ2 , .. , Γ3 } Y" := (¬X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (at level 70, format "X  ⊈{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "(⊈{ Γ1 , Γ2 , .. , Γ3 } )" := (λ X Y, X {pair .. (Γ1, Γ2) .. Γ3} Y)
  (only parsing) : C_scope.
Notation "Xs ⊆{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}) Xs Ys)
  (at level 70, format "Xs  ⊆{ Γ1 , Γ2 , .. , Γ3 }*  Ys") : C_scope.
Notation "(⊆{ Γ1 , Γ2 , .. , Γ3 }* )" := (Forall2 ({pair .. (Γ1, Γ2) .. Γ3}))
  (only parsing, Γ1 at level 1) : C_scope.
Hint Extern 0 (_ {_} _) => reflexivity.
303

304
305
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
306
307
308
309
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
310
311
312
313
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
314

315
316
317
318
319
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Robbert Krebbers's avatar
Robbert Krebbers committed
320
Class ElemOf A B := elem_of: A  B  Prop.
321
Instance: Params (@elem_of) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
323
324
325
326
327
328
329
330
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
331
332
333
334
Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
335
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
Notation "(.⊥ X )" := (λ Y, Y   X) (only parsing) : C_scope.
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.
362
363
364

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
365
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.
366

367
368
369
370
371
372
Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.
373

374
  Lemma disjoint_list_nil  :  @nil A  True.
375
376
377
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
378
End disjoint_list.
379
380

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. These type classes are defined in a non-standard way by taking the
function as a parameter of the class. For example, we define
<<
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
>>
instead of
<<
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
>>
This approach allows us to define [fmap] on lists such that [simpl] unfolds it
in the appropriate way, and so that it can be used for mutual recursion
(the mapped function [f] is not part of the fixpoint) as well. This is a hack,
and should be replaced by something more appropriate in future versions. *)

398
(** We use these type classes merely for convenient overloading of notations and
399
400
401
402
403
404
405
406
407
do not formalize any theory on monads (we do not even define a class with the
monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : Type  Type) {A B} (f : A  M B) := mbind: M A  M B.
Notation MBind M := ( {A B} (f : A  M B), MBindD M f)%type.
Instance: Params (@mbind) 5.
408
Arguments mbind {_ _ _} _ {_} !_ /.
409
410
411

Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Instance: Params (@mjoin) 3.
412
Arguments mjoin {_ _ _} !_ /.
413
414
415
416

Class FMapD (M : Type  Type) {A B} (f : A  B) := fmap: M A  M B.
Notation FMap M := ( {A B} (f : A  B), FMapD M f)%type.
Instance: Params (@fmap) 6.
417
Arguments fmap {_ _ _} _ {_} !_ /.
418

419
420
421
422
423
Class OMapD (M : Type  Type) {A B} (f : A  option B) := omap: M A  M B.
Notation OMap M := ( {A B} (f : A  option B), OMapD M f)%type.
Instance: Params (@omap) 6.
Arguments omap {_ _ _} _ {_} !_ /.

424
425
426
427
428
429
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
430
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
431
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
432
433
434
435
436
437
Notation "'( x1 , x2 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1, x2) := x in z))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
Notation "'( x1 , x2 , x3 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
438
439

Class MGuard (M : Type  Type) :=
440
441
442
443
444
445
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
  (at level 65, next at level 35, only parsing, right associativity) : C_scope.
446

447
(** ** Operations on maps *)
448
449
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
450
The function look up [m !! k] should yield the element at key [k] in [m]. *)
451
Class Lookup (K A M : Type) := lookup: K  M  option A.
452
453
454
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
455
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
456
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
457
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.
458
459
460

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
461
Class Insert (K A M : Type) := insert: K  A  M  M.
462
463
464
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
465
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.
466

467
468
469
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
470
Class Delete (K M : Type) := delete: K  M  M.
471
472
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.
473
474

(** The function [alter f k m] should update the value at key [k] using the
475
function [f], which is called with the original value. *)
476
Class AlterD (K A M : Type) (f : A  A) := alter: K  M  M.
477
478
479
Notation Alter K A M := ( (f : A  A), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.
480
481

(** The function [alter f k m] should update the value at key [k] using the
482
483
484
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
485
486
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
487
Instance: Params (@partial_alter) 4.
488
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.
489
490
491

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
492
493
494
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.
495
496

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
497
498
499
500
501
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.
502
503

(** We lift the insert and delete operation to lists of elements. *)
504
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
505
  fold_right (λ p, <[p.1:=p.2]>) m l.
506
Instance: Params (@insert_list) 4.
507
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
508
  fold_right delete m l.
509
510
511
512
513
514
515
Instance: Params (@delete_list) 3.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
516
Instance: Params (@union_with) 3.
517
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.
518

519
520
521
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
522
Instance: Params (@intersection_with) 3.
523
524
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

525
526
Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
527
Instance: Params (@difference_with) 3.
528
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.
Robbert Krebbers's avatar
Robbert Krebbers committed
529

530
531
532
533
Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

534
535
536
537
538
539
540
541
542
543
544
545
546
Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Instance: Params (@insert) 6.
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

547
548
549
550
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
allows us to write [injective (k ++)] instead of [app_inv_head k]. *)
551
552
553
554
555
Class Injective {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  injective:  x y, S (f x) (f y)  R x y.
Class Injective2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A  B  C) : Prop :=
  injective2:  x1 x2  y1 y2, S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
556
557
558
559
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
  cancel:  x, S (f (g x)) x.
Class Surjective {A B} (R : relation B) (f : A  B) :=
  surjective :  y,  x, R (f x) y.
560
Class Idempotent {A} (R : relation A) (f : A  A  A) : Prop :=
561
  idempotent:  x, R (f x x) x.
562
Class Commutative {A B} (R : relation A) (f : B  B  A) : Prop :=
563
  commutative:  x y, R (f x y) (f y x).
564
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
565
  left_id:  x, R (f i x) x.
566
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
567
  right_id:  x, R (f x i) x.
568
Class Associative {A} (R : relation A) (f : A  A  A) : Prop :=
569
  associative:  x y z, R (f x (f y z)) (f (f x y) z).
570
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
571
  left_absorb:  x, R (f i x) i.
572
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
573
  right_absorb:  x, R (f x i) i.
574
575
576
577
Class LeftDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  left_distr:  x y z, R (f x (g y z)) (g (f x y) (f x z)).
Class RightDistr {A} (R : relation A) (f g : A  A  A) : Prop :=
  right_distr:  y z x, R (f (g y z) x) (g (f y x) (f z x)).
578
579
Class AntiSymmetric {A} (R S : relation A) : Prop :=
  anti_symmetric:  x y, S x y  S y x  R x y.
580
581
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
582
  trichotomy :  x y, R x y  x = y  R y x.
583
Class TrichotomyT {A} (R : relation A) :=
584
  trichotomyT :  x y, {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
585

586
Arguments irreflexivity {_} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
587
Arguments injective {_ _ _ _} _ {_} _ _ _.
588
Arguments injective2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
589
590
Arguments cancel {_ _ _} _ _ {_} _.
Arguments surjective {_ _ _} _ {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
591
592
593
594
595
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
596
597
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
598
599
Arguments left_distr {_ _} _ _ {_} _ _ _.
Arguments right_distr {_ _} _ _ {_} _ _ _.
600
Arguments anti_symmetric {_ _} _ {_} _ _ _ _.
601
602
603
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.
604

605
606
607
Instance id_injective {A} : Injective (=) (=) (@id A).
Proof. intros ??; auto. Qed.

608
609
610
611
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idempotent_L {A} (f : A  A  A) `{!Idempotent (=) f} x : f x x = x.
612
Proof. auto. Qed.
613
Lemma commutative_L {A B} (f : B  B  A) `{!Commutative (=) f} x y :
614
  f x y = f y x.
615
Proof. auto. Qed.
616
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
617
Proof. auto. Qed.
618
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
619
Proof. auto. Qed.
620
Lemma associative_L {A} (f : A  A  A) `{!Associative (=) f} x y z :
621
  f x (f y z) = f (f x y) z.
622
Proof. auto. Qed.
623
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
624
625
  f i x = i.
Proof. auto. Qed.
626
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
627
628
  f x i = i.
Proof. auto. Qed.
629
Lemma left_distr_L {A} (f g : A  A  A) `{!LeftDistr (=) f g} x y z :
630
631
  f x (g y z) = g (f x y) (f x z).
Proof. auto. Qed.
632
Lemma right_distr_L {A} (f g : A  A  A) `{!RightDistr (=) f g} y z x :
633
634
  f (g y z) x = g (f y x) (f z x).
Proof. auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
635

636
(** ** Axiomatization of ordered structures *)
637
638
639
640
641
642
643
644
645
646
647
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] do not use the
relation [⊆] because we often have multiple orders on the same structure. *)
Class PartialOrder {A} (R : relation A) : Prop := {
  po_preorder :> PreOrder R;
  po_anti_symmetric :> AntiSymmetric (=) R
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  to_po :> PartialOrder R;
  to_trichotomy :> Trichotomy R
}.

648
(** We do not include equality in the following interfaces so as to avoid the
649
need for proofs that the relations and operations respect setoid equality.
650
651
Instead, we will define setoid equality in a generic way as
[λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
652
653
654
655
656
Class BoundedPreOrder A `{Empty A, SubsetEq A} : Prop := {
  bounded_preorder :>> PreOrder ();
  subseteq_empty X :   X
}.
Class BoundedJoinSemiLattice A `{Empty A, SubsetEq A, Union A} : Prop := {
657
  bjsl_preorder :>> BoundedPreOrder A;
658
659
660
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
Robbert Krebbers's avatar
Robbert Krebbers committed
661
}.
662
Class MeetSemiLattice A `{Empty A, SubsetEq A, Intersection A} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
663
  msl_preorder :>> BoundedPreOrder A;
664
665
666
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
Robbert Krebbers's avatar
Robbert Krebbers committed
667
}.
668
669
670
671

(** A join distributive lattice with distributivity stated in the order
theoretic way. We will prove that distributivity of join, and distributivity
as an equality can be derived. *)
672
673
Class LowerBoundedLattice A
    `{Empty A, SubsetEq A, Union A, Intersection A} : Prop := {
674
  lbl_bjsl :>> BoundedJoinSemiLattice A;
675
  lbl_msl :>> MeetSemiLattice A;
676
  lbl_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
677
}.
678

679
(** ** Axiomatization of collections *)
680
681
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
682
Instance: Params (@map) 3.
683
684
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
685
  not_elem_of_empty (x : A) : x  ;
686
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
687
688
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
689
690
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
691
  collection_simple :>> SimpleCollection A C;
Robbert Krebbers's avatar
Robbert Krebbers committed
692
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
693
694
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
695
696
697
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    IntersectionWith A C, Filter A C} : Prop := {
698
  collection_ops :>> Collection A C;
699
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
700
701
702
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x :
    x  filter P X  P x  x  X
Robbert Krebbers's avatar
Robbert Krebbers committed
703
704
}.

705
706
707
(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
708
Class Elements A C := elements: C  list A.
709
Instance: Params (@elements) 3.
710
711
712
713
714
715
716
717
718
719
720
721
722

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
723
724
725
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
Robbert Krebbers's avatar
Robbert Krebbers committed
726
  fin_collection :>> Collection A C;
727
  elements_spec X x : x  X  x  elements X;
Robbert Krebbers's avatar
Robbert Krebbers committed
728
  elements_nodup X : NoDup (elements X)
729
730
}.
Class Size C := size: C  nat.
731
Arguments size {_ _} !_ / : simpl nomatch.
732
Instance: Params (@size) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
733

734
735
736
737
738
739
740
741
(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
742
743
744
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
745
746
747
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
748
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
749
750
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
751
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
752
753
}.

754
755
756
(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
757
Class Fresh A C := fresh: C  A.
758
Instance: Params (@fresh) 3.
759
760
Class FreshSpec A C `{ElemOf A C,
    Empty C, Singleton A C, Union C, Fresh A C} : Prop := {
761
  fresh_collection_simple :>> SimpleCollection A C;
762
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
Robbert Krebbers's avatar
Robbert Krebbers committed
763
764
765
  is_fresh (X : C) : fresh X  X
}.

766
(** * Miscellaneous *)
767
Class Half A := half: A  A.
768
769
Notation "½" := half : C_scope.
Notation "½*" := (fmap (M:=list) half) : C_scope.
770

771
772
Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
773
Proof. injection 1; trivial. Qed.
774
Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
775
Proof. intuition. Qed.
776
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
777
778
Proof. intuition. Qed.

779
780
781
(** ** Pointwise relations *)
(** These instances are in Coq trunk since revision 15455, but are not in Coq
8.4 yet. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
782
783
784
785
786
787
788
789
790
791
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive R  Reflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric R  Symmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive R  Transitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

792
(** ** Products *)
793
794
795
796
797
798
799
Instance prod_map_injective {A A' B B'} (f : A  A') (g : B  B') :
  Injective (=) (=) f  Injective (=) (=) g 
  Injective (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (injective f)|apply (injective g)]; congruence.
Qed.
800

801
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
802
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Robbert Krebbers's avatar
Robbert Krebbers committed
803
Section prod_relation.
804
  Context `{R1 : relation A, R2 : relation B}.
805
806
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
807
  Proof. firstorder eauto. Qed.
808
809
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
810
  Proof. firstorder eauto. Qed.
811
812
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
Robbert Krebbers's avatar
Robbert Krebbers committed
813
  Proof. firstorder eauto. Qed.