list.v 160 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From stdpp Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

8
Arguments length {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
Arguments cons {_} _ _.
Arguments app {_} _ _.
11
12
13
14

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
15

16
17
18
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
19

20
Arguments tail {_} _.
21
22
23
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

24
25
26
27
28
29
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.
30
Remove Hints Permutation_cons : typeclass_instances.
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32
33
34
35
36
37
38
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

39
40
41
42
43
44
45
46
47
Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
48
49
50
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

51
(** * Definitions *)
52
53
54
55
56
57
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

58
59
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
60
61
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
62
  match l with
63
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
64
  end.
65
66
67

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
68
Instance list_alter {A} : Alter nat A (list A) := λ f,
69
  fix go i l {struct l} :=
70
71
  match l with
  | [] => []
72
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
73
  end.
74

75
76
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
77
78
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
79
80
81
82
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
83
84
85
86
87
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
88
Instance: Params (@list_inserts) 1.
89

90
91
92
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
93
94
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
95
96
  match l with
  | [] => []
97
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
98
  end.
99
100
101

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
103
104
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
105
  match l with [x] => Some x | _ => None end.
Robbert Krebbers's avatar
Robbert Krebbers committed
106
107
108
109

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
110
  fix go P _ l := let _ : Filter _ _ := @go in
Robbert Krebbers's avatar
Robbert Krebbers committed
111
112
  match l with
  | [] => []
113
  | x :: l => if decide (P x) then x :: filter P l else filter P l
114
115
116
117
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
118
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
119
120
  fix go l :=
  match l with
121
122
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
123
  end.
124
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
126
127
128

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
129
  match n with 0 => [] | S n => x :: replicate n x end.
130
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
132
133

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
134
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
135

136
137
138
139
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
140
Instance: Params (@last) 1.
141

Robbert Krebbers's avatar
Robbert Krebbers committed
142
143
144
145
146
147
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
148
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
Robbert Krebbers's avatar
Robbert Krebbers committed
149
150
  end.
Arguments resize {_} !_ _ !_.
151
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
152

153
154
155
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
156
157
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
158
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
159
  end.
160
Instance: Params (@reshape) 2.
161

162
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
163
164
165
166
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
167

168
169
170
171
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
172
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.
173
174
175

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
176
177
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
178
179
180
181
182
183
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
184
185
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
186
187
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
188
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
189
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
190
  fix go l :=
191
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.
192
193
194
195
196

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
197
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
198
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
199
200
201
202
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Robbert Krebbers's avatar
Robbert Krebbers committed
203
204
205
206
207
208
209
210
211
Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

212
213
214
215
216
217
218
Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.
219

220
221
222
223
224
225
226
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.
227
228
229
230

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
231
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
232
233
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
234
  match l with [] => [[]] | x :: l => permutations l = interleave x end.
235

236
237
(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
238
239
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
240
241
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
242
243
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
244

245
246
247
248
249
250
251
252
Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
253
      if decide_rel (=) x1 x2
254
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
255
256
257
258
259
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
260
261
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
262
End prefix_suffix_ops.
Robbert Krebbers's avatar
Robbert Krebbers committed
263

264
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
265
266
267
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
268
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
269
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
270
Infix "`sublist`" := sublist (at level 70) : C_scope.
271
Hint Extern 0 (_ `sublist` _) => reflexivity.
272
273

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
274
from [l1] while possiblity changing the order. *)
275
276
277
278
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
279
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
280
281
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
282
Hint Extern 0 (_ `contains` _) => reflexivity.
283
284
285
286
287
288
289
290
291
292

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
293
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
294
295
    end.
End contains_dec_help.
296

297
298
299
300
301
Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').
302
303

(** Set operations on lists *)
304
305
306
Definition included {A} (l1 l2 : list A) :=  x, x  l1  x  l2.
Infix "`included`" := included (at level 70) : C_scope.

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
330
      then list_difference l k else x :: list_difference l k
331
    end.
332
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
333
334
335
336
337
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
338
      then x :: list_intersection l k else list_intersection l k
339
340
341
342
343
344
345
346
347
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.
348
349

(** * Basic tactics on lists *)
350
(** The tactic [discriminate_list] discharges a goal if it contains
351
352
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
353
Tactic Notation "discriminate_list" hyp(H) :=
354
  apply (f_equal length) in H;
355
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
356
357
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
358

359
(** The tactic [simplify_list_eq] simplifies hypotheses involving
360
361
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
362
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
363
364
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
365
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
366
367
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
368
  intros ? Hl. apply app_inj_1; auto.
369
370
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
371
Ltac simplify_list_eq :=
372
  repeat match goal with
373
  | _ => progress simplify_eq/=
374
  | H : _ ++ _ = _ ++ _ |- _ => first
375
    [ apply app_inv_head in H | apply app_inv_tail in H
376
377
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
378
  | H : [?x] !! ?i = Some ?y |- _ =>
379
    destruct i; [change (Some x = Some y) in H | discriminate]
380
  end.
381

382
383
(** * General theorems *)
Section general_properties.
Robbert Krebbers's avatar
Robbert Krebbers committed
384
Context {A : Type}.
385
386
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
387

388
Global Instance: Inj2 (=) (=) (=) (@cons A).
389
Proof. by injection 1. Qed.
390
Global Instance:  k, Inj (=) (=) (k ++).
391
Proof. intros ???. apply app_inv_head. Qed.
392
Global Instance:  k, Inj (=) (=) (++ k).
393
Proof. intros ???. apply app_inv_tail. Qed.
394
Global Instance: Assoc (=) (@app A).
395
396
397
398
399
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
400

401
Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
402
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
403
404
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
405
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
406
407
408
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
409
Proof.
410
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
411
412
413
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
414
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
415
Qed.
416
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
417
  Decision (l = k) := list_eq_dec dec.
418
419
420
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
421
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
422
423
424
425
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
426
Lemma nil_or_length_pos l : l = []  length l  0.
427
Proof. destruct l; simpl; auto with lia. Qed.
428
Lemma nil_length_inv l : length l = 0  l = [].
429
430
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
431
Proof. by destruct i. Qed.
432
Lemma lookup_tail l i : tail l !! i = l !! S i.
433
Proof. by destruct l. Qed.
434
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
435
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
436
437
438
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
439
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
440
441
442
443
444
445
446
447
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
448
449
450
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
451
Proof.
452
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
453
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
454
455
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
456
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
Qed.
458
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
459
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
460
461
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
462
Lemma lookup_app_r l1 l2 i :
463
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
464
465
466
467
468
469
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
470
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
471
      simplify_eq/=; auto with lia.
472
    destruct (IH i) as [?|[??]]; auto with lia.
473
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
474
Qed.
475
476
477
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
478

479
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
480
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
481
Lemma alter_length f l i : length (alter f i l) = length l.
482
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
483
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
484
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
485
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
486
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
487
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
488
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
489
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
490
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
491
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
492
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
493
494
495
496
497
498
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
499
  - intros Hy. assert (j < length l).
500
501
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
502
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
503
504
505
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
506
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
507
508
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Robbert Krebbers's avatar
Robbert Krebbers committed
509
Proof.
510
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
511
512
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
Qed.
514
515
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
516
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
517
Lemma alter_app_r f l1 l2 i :
518
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
519
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
520
521
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
522
523
524
525
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
526
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
527
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
528
529
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
530
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
531
532
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
533
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
534
535
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
536
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
537
538
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
539
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
540
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
541
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
542
543
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
544
545
546
547
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
548
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
549
Proof. induction l1; f_equal/=; auto. Qed.
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
588
  - intros Hy. assert (j < length l).
589
590
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
591
  - intuition. by rewrite list_lookup_inserts by lia.
592
593
594
595
596
597
598
599
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

600
(** ** Properties of the [elem_of] predicate *)
601
Lemma not_elem_of_nil x : x  [].
602
Proof. by inversion 1. Qed.
603
Lemma elem_of_nil x : x  []  False.
604
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
605
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
606
Proof. destruct l. done. by edestruct 1; constructor. Qed.
607
608
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
609
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
610
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
611
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Robbert Krebbers's avatar
Robbert Krebbers committed
612
Proof. rewrite elem_of_cons. tauto. Qed.
613
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
614
Proof.
615
  induction l1.
616
617
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
618
Qed.
619
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
620
Proof. rewrite elem_of_app. tauto. Qed.
621
Lemma elem_of_list_singleton x y : x  [y]  x = y.
622
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
623
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
624
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
625
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
626
Proof.
627
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
628
  by exists (y :: l1), l2.
629
Qed.
630
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
631
Proof.
632
633
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
634
Qed.
635
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
636
Proof.
637
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
638
Qed.
639
640
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
641
642
643
644
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
645
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
646
      setoid_rewrite elem_of_cons; naive_solver.
647
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
648
      simplify_eq; try constructor; auto.
649
Qed.
650

651
(** ** Properties of the [NoDup] predicate *)
652
653
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
654
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
655
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
656
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
657
Proof. rewrite NoDup_cons. by intros [??]. Qed.
658
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
659
Proof. rewrite NoDup_cons. by intros [??]. Qed.
660
Lemma NoDup_singleton x : NoDup [x].
661
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
662
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Robbert Krebbers's avatar
Robbert Krebbers committed
663
Proof.
664
  induction l; simpl.
665
666
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
667
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
668
Qed.
669
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
670
671
Proof.
  induction 1 as [|x l k Hlk IH | |].
672
673
674
675
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
676
Qed.
677
678
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
679
680
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
681
682
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
683
684
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
685
686
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
687
Proof.
688
689
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
690
  - rewrite elem_of_list_lookup. intros [i ?].
691
    by feed pose proof (Hl (S i) 0 x); auto.
692
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
693
Qed.