diff --git a/theories/typing/borrow.v b/theories/typing/borrow.v index f96250b8ac2ef87fd90481ea8f71bdf0ffeca38e..64aff4a2ac21274319b28c395151a8f45e7c542e 100644 --- a/theories/typing/borrow.v +++ b/theories/typing/borrow.v @@ -28,7 +28,7 @@ Section borrow. Lemma tctx_extract_hasty_borrow E L p n ty κ T : tctx_extract_hasty E L p (&uniq{κ}ty) ((p â— own n ty)::T) ((p â—{κ} own n ty)::T). - Proof. apply (tctx_incl_frame_r E L _ [_] [_;_]), tctx_borrow. Qed. + Proof. apply (tctx_incl_frame_r _ [_] [_;_]), tctx_borrow. Qed. (* See the comment above [tctx_extract_hasty_share] in [uniq_bor.v]. *) Lemma tctx_extract_hasty_borrow_share E L p ty ty' κ n T : @@ -36,11 +36,8 @@ Section borrow. tctx_extract_hasty E L p (&shr{κ}ty) ((p â— own n ty')::T) ((p â— &shr{κ}ty')::(p â—{κ} own n ty')::T). Proof. - intros. apply (tctx_incl_frame_r E L _ [_] [_;_;_]). etrans. - { by apply tctx_borrow. } - apply (tctx_incl_frame_r E L _ [_] [_;_]). etrans. - by apply tctx_share. etrans. by apply copy_tctx_incl, _. - by apply (tctx_incl_frame_r E L _ [_] [_]), subtype_tctx_incl, shr_mono'. + intros. apply (tctx_incl_frame_r _ [_] [_;_;_]). rewrite ->tctx_borrow. + apply (tctx_incl_frame_r _ [_] [_;_]). rewrite ->tctx_share; solve_typing. Qed. Lemma type_deref_uniq_own {E L} κ p n ty : diff --git a/theories/typing/function.v b/theories/typing/function.v index 59ab07fe31d8cd4cc6c7a65bbc0582c1dc786933..ac9c37cbed279b54c8335cf2de84ca033ce6435b 100644 --- a/theories/typing/function.v +++ b/theories/typing/function.v @@ -210,7 +210,7 @@ Section typing. rewrite -typed_body_mono /flip; last done; first by eapply type_call. - etrans. eapply (incl_cctx_incl _ [_]); first by intros ? ->%elem_of_list_singleton. apply cctx_incl_cons_match; first done. intros args. inv_vec args=>ret q. inv_vec q. done. - - etrans; last by apply (tctx_incl_frame_l _ _ [_]). + - etrans; last by apply (tctx_incl_frame_l [_]). apply copy_elem_of_tctx_incl; last done. apply _. Qed. diff --git a/theories/typing/lft_contexts.v b/theories/typing/lft_contexts.v index 0ec04a9c1c36df26decc23e56b82e22b17e1483b..fb676f682297418b0ba991a1724befe185136490 100644 --- a/theories/typing/lft_contexts.v +++ b/theories/typing/lft_contexts.v @@ -340,6 +340,7 @@ Section elctx_incl. ∀ F, ↑lftN ⊆ F → elctx_interp_0 E -∗ ⌜llctx_interp_0 L⌠-∗ ∀ qE1, elctx_interp E1 qE1 ={F}=∗ ∃ qE2, elctx_interp E2 qE2 ∗ (elctx_interp E2 qE2 ={F}=∗ elctx_interp E1 qE1). + Global Instance : RewriteRelation elctx_incl. Global Instance elctx_incl_preorder : PreOrder elctx_incl. Proof. @@ -376,10 +377,9 @@ Section elctx_incl. iMod ("Hclose2" with "[$HE2 $HE2']") as "$". done. Qed. - Global Instance elctx_incl_cons_proper x : Proper (elctx_incl ==> elctx_incl) (cons x). - Proof. intros ???. by apply (elctx_incl_app_proper [_] [_]). Qed. + Proof. by apply (elctx_incl_app_proper [_] [_]). Qed. Lemma elctx_incl_dup E1 : elctx_incl E1 (E1 ++ E1). @@ -403,7 +403,7 @@ Section elctx_incl. Lemma elctx_incl_lft_alive E1 E2 κ : lctx_lft_alive E1 [] κ → elctx_incl E1 E2 → elctx_incl E1 ((☀κ) :: E2). Proof. - intros Hκ HE2. rewrite ->elctx_incl_dup. + intros Hκ HE2. rewrite (elctx_incl_dup E1). apply (elctx_incl_app_proper _ [_]); last done. apply elctx_sat_incl. apply elctx_sat_alive, elctx_sat_nil; first done. Qed. @@ -446,6 +446,6 @@ Lemma elctx_incl_lft_incl_alive `{invG Σ, lftG Σ} E L E1 E2 κ κ' : lctx_lft_incl (E ++ E1) L κ κ' → elctx_incl E L E1 E2 → elctx_incl E L ((☀κ) :: E1) ((☀κ') :: E2). Proof. - intros Hκκ' ->%(elctx_incl_lft_incl _ _ _ _ _ _ Hκκ'). + move=> ? /elctx_incl_lft_incl -> //. apply (elctx_incl_app_proper _ _ [_; _] [_]); solve_typing. Qed. diff --git a/theories/typing/product.v b/theories/typing/product.v index 58063ec67167a994549de0d72c45bab19b54278f..705ae108604ad8cec277027f098453c0701480e0 100644 --- a/theories/typing/product.v +++ b/theories/typing/product.v @@ -244,6 +244,6 @@ Section typing. Proof. by rewrite -prod_flatten_r -prod_flatten_l. Qed. End typing. - Hint Resolve product_mono' product_proper' : lrust_typing. Hint Resolve product2_mono' product2_proper' | 100 : lrust_typing. +Hint Opaque product : lrust_typing. diff --git a/theories/typing/product_split.v b/theories/typing/product_split.v index 82a97ff6b4e1a11bb355f14c0b94234f37311aa8..928fecfb2af4405841bd8b3cbda8ebac0d8b0fbb 100644 --- a/theories/typing/product_split.v +++ b/theories/typing/product_split.v @@ -12,7 +12,8 @@ Section product_split. Fixpoint hasty_ptr_offsets (p : path) (ptr: type → type) tyl (off : nat) : tctx := match tyl with | [] => [] - | ty :: tyl => (p +â‚— #off â— ptr ty) :: hasty_ptr_offsets p ptr tyl (off + ty.(ty_size)) + | ty :: tyl => + (p +â‚— #off â— ptr ty) :: hasty_ptr_offsets p ptr tyl (off + ty.(ty_size)) end. Lemma hasty_ptr_offsets_offset (l : loc) p (off1 off2 : nat) ptr tyl tid : @@ -36,7 +37,8 @@ Section product_split. (∀ tid ty vl, (ptr ty).(ty_own) tid vl -∗ ⌜∃ l : loc, vl = [(#l) : val]âŒ) → ∀ p, tctx_incl E L [p â— ptr $ product tyl] (hasty_ptr_offsets p ptr tyl 0). Proof. - iIntros (Hsplit Hloc p tid q1 q2) "#LFT HE HL H". iInduction tyl as [|ty tyl IH] "IH" forall (p). + iIntros (Hsplit Hloc p tid q1 q2) "#LFT HE HL H". + iInduction tyl as [|ty tyl IH] "IH" forall (p). { iFrame "HE HL". rewrite tctx_interp_nil. done. } rewrite product_cons. iMod (Hsplit with "LFT HE HL H") as "(HE & HL & H)". cbn -[tctx_elt_interp]. rewrite tctx_interp_cons tctx_interp_singleton tctx_interp_cons. @@ -46,7 +48,7 @@ Section product_split. { iExists #l. iSplit; last done. simpl; by rewrite Hp shift_loc_0. } iMod ("IH" with "* HE HL [Htyl]") as "($ & $ & Htyl)". { rewrite tctx_interp_singleton //. } - iClear "IH". rewrite (hasty_ptr_offsets_offset l) // -plus_n_O //. + iClear "IH". rewrite (hasty_ptr_offsets_offset l) // -plus_n_O //. Qed. Lemma tctx_merge_ptr_prod E L ptr tyl : @@ -57,14 +59,15 @@ Section product_split. (∀ tid ty vl, (ptr ty).(ty_own) tid vl -∗ ⌜∃ l : loc, vl = [(#l) : val]âŒ) → ∀ p, tctx_incl E L (hasty_ptr_offsets p ptr tyl 0) [p â— ptr $ product tyl]. Proof. - iIntros (Hptr Htyl Hmerge Hloc p tid q1 q2) "#LFT HE HL H". iInduction tyl as [|ty tyl IH] "IH" forall (p Htyl); first done. + iIntros (Hptr Htyl Hmerge Hloc p tid q1 q2) "#LFT HE HL H". + iInduction tyl as [|ty tyl IH] "IH" forall (p Htyl); first done. rewrite product_cons. rewrite /= tctx_interp_singleton tctx_interp_cons. iDestruct "H" as "[Hty Htyl]". iDestruct "Hty" as (v) "[Hp Hty]". iDestruct "Hp" as %Hp. iDestruct (Hloc with "Hty") as %[l [=->]]. assert (eval_path p = Some #l) as Hp'. { move:Hp. simpl. clear. destruct (eval_path p); last done. destruct v; try done. destruct l0; try done. rewrite shift_loc_0. done. } - clear Hp. destruct tyl. + clear Hp. destruct tyl. { iDestruct (elctx_interp_persist with "HE") as "#HE'". iDestruct (llctx_interp_persist with "HL") as "#HL'". iFrame "HE HL". iClear "IH Htyl". simpl. iExists #l. rewrite product_nil. iSplitR; first done. @@ -74,7 +77,8 @@ Section product_split. iMod ("IH" with "* [] HE HL [Htyl]") as "(HE & HL & Htyl)"; first done. { change (ty_size ty) with (0+ty_size ty)%nat at 1. rewrite plus_comm -hasty_ptr_offsets_offset //. } - iClear "IH". iMod (Hmerge with "LFT HE HL [Hty Htyl]") as "($ & $ & ?)"; last by rewrite tctx_interp_singleton. + iClear "IH". iMod (Hmerge with "LFT HE HL [Hty Htyl]") as "($ & $ & ?)"; + last by rewrite tctx_interp_singleton. rewrite tctx_interp_singleton tctx_interp_cons tctx_interp_singleton. iFrame. iExists #l. iSplit; done. Qed. @@ -126,8 +130,7 @@ Section product_split. Qed. Lemma tctx_split_own_prod E L n tyl p : - tctx_incl E L [p â— own n $ product tyl] - (hasty_ptr_offsets p (own n) tyl 0). + tctx_incl E L [p â— own n $ product tyl] (hasty_ptr_offsets p (own n) tyl 0). Proof. apply tctx_split_ptr_prod. - intros. apply tctx_split_own_prod2. @@ -146,14 +149,14 @@ Section product_split. Qed. (** Unique borrows *) - Lemma tctx_split_uniq_bor_prod2 E L p κ ty1 ty2 : - tctx_incl E L [p â— uniq_bor κ $ product2 ty1 ty2] - [p â— uniq_bor κ ty1; p +â‚— #ty1.(ty_size) â— uniq_bor κ ty2]. + Lemma tctx_split_uniq_prod2 E L p κ ty1 ty2 : + tctx_incl E L [p â— &uniq{κ} product2 ty1 ty2] + [p â— &uniq{κ} ty1; p +â‚— #ty1.(ty_size) â— &uniq{κ} ty2]. Proof. iIntros (tid q1 q2) "#LFT $ $ H". rewrite tctx_interp_singleton tctx_interp_cons tctx_interp_singleton. iDestruct "H" as (v) "[Hp H]". iDestruct "Hp" as %Hp. - iDestruct "H" as (l P) "[[EQ #HPiff] HP]". iDestruct "EQ" as %[=->]. + iDestruct "H" as (l P) "[[EQ #HPiff] HP]". iDestruct "EQ" as %[=->]. iMod (bor_iff with "LFT [] HP") as "Hown". set_solver. by eauto. rewrite /= split_prod_mt. iMod (bor_sep with "LFT Hown") as "[H1 H2]". set_solver. rewrite /tctx_elt_interp /=. @@ -161,9 +164,9 @@ Section product_split. iExists _, _; erewrite <-uPred.iff_refl; auto. Qed. - Lemma tctx_merge_uniq_bor_prod2 E L p κ ty1 ty2 : - tctx_incl E L [p â— uniq_bor κ ty1; p +â‚— #ty1.(ty_size) â— uniq_bor κ ty2] - [p â— uniq_bor κ $ product2 ty1 ty2]. + Lemma tctx_merge_uniq_prod2 E L p κ ty1 ty2 : + tctx_incl E L [p â— &uniq{κ} ty1; p +â‚— #ty1.(ty_size) â— &uniq{κ} ty2] + [p â— &uniq{κ} product2 ty1 ty2]. Proof. iIntros (tid q1 q2) "#LFT $ $ H". rewrite tctx_interp_singleton tctx_interp_cons tctx_interp_singleton. @@ -179,36 +182,36 @@ Section product_split. rewrite split_prod_mt. iApply (bor_combine with "LFT Hown1 Hown2"). set_solver. Qed. - Lemma uniq_bor_is_ptr κ ty tid (vl : list val) : - ty_own (uniq_bor κ ty) tid vl -∗ ⌜∃ l : loc, vl = [(#l) : val]âŒ. + Lemma uniq_is_ptr κ ty tid (vl : list val) : + ty_own (&uniq{κ} ty) tid vl -∗ ⌜∃ l : loc, vl = [(#l) : val]âŒ. Proof. iIntros "H". iDestruct "H" as (l P) "[[% _] _]". iExists l. done. Qed. - Lemma tctx_split_uniq_bor_prod E L κ tyl p : - tctx_incl E L [p â— uniq_bor κ $ product tyl] + Lemma tctx_split_uniq_prod E L κ tyl p : + tctx_incl E L [p â— &uniq{κ} product tyl] (hasty_ptr_offsets p (uniq_bor κ) tyl 0). Proof. apply tctx_split_ptr_prod. - - intros. apply tctx_split_uniq_bor_prod2. - - intros. apply uniq_bor_is_ptr. + - intros. apply tctx_split_uniq_prod2. + - intros. apply uniq_is_ptr. Qed. - Lemma tctx_merge_uniq_bor_prod E L κ tyl : + Lemma tctx_merge_uniq_prod E L κ tyl : tyl ≠[] → ∀ p, tctx_incl E L (hasty_ptr_offsets p (uniq_bor κ) tyl 0) - [p â— uniq_bor κ $ product tyl]. + [p â— &uniq{κ} product tyl]. Proof. intros. apply tctx_merge_ptr_prod; try done. - apply _. - - intros. apply tctx_merge_uniq_bor_prod2. - - intros. apply uniq_bor_is_ptr. + - intros. apply tctx_merge_uniq_prod2. + - intros. apply uniq_is_ptr. Qed. (** Shared borrows *) - Lemma tctx_split_shr_bor_prod2 E L p κ ty1 ty2 : - tctx_incl E L [p â— shr_bor κ $ product2 ty1 ty2] - [p â— shr_bor κ ty1; p +â‚— #ty1.(ty_size) â— shr_bor κ ty2]. + Lemma tctx_split_shr_prod2 E L p κ ty1 ty2 : + tctx_incl E L [p â— &shr{κ} product2 ty1 ty2] + [p â— &shr{κ} ty1; p +â‚— #ty1.(ty_size) â— &shr{κ} ty2]. Proof. iIntros (tid q1 q2) "#LFT $ $ H". rewrite tctx_interp_singleton tctx_interp_cons tctx_interp_singleton. @@ -218,9 +221,9 @@ Section product_split. iExists _; iSplitR; done. Qed. - Lemma tctx_merge_shr_bor_prod2 E L p κ ty1 ty2 : - tctx_incl E L [p â— shr_bor κ ty1; p +â‚— #ty1.(ty_size) â— shr_bor κ ty2] - [p â— shr_bor κ $ product2 ty1 ty2]. + Lemma tctx_merge_shr_prod2 E L p κ ty1 ty2 : + tctx_incl E L [p â— &shr{κ} ty1; p +â‚— #ty1.(ty_size) â— &shr{κ} ty2] + [p â— &shr{κ} product2 ty1 ty2]. Proof. iIntros (tid q1 q2) "#LFT $ $ H". rewrite tctx_interp_singleton tctx_interp_cons tctx_interp_singleton. @@ -233,30 +236,93 @@ Section product_split. by iFrame. Qed. - - Lemma shr_bor_is_ptr κ ty tid (vl : list val) : - ty_own (shr_bor κ ty) tid vl -∗ ⌜∃ l : loc, vl = [(#l) : val]âŒ. + Lemma shr_is_ptr κ ty tid (vl : list val) : + ty_own (&shr{κ} ty) tid vl -∗ ⌜∃ l : loc, vl = [(#l) : val]âŒ. Proof. iIntros "H". iDestruct "H" as (l) "[% _]". iExists l. done. Qed. - Lemma tctx_split_shr_bor_prod E L κ tyl p : - tctx_incl E L [p â— shr_bor κ $ product tyl] + Lemma tctx_split_shr_prod E L κ tyl p : + tctx_incl E L [p â— &shr{κ} product tyl] (hasty_ptr_offsets p (shr_bor κ) tyl 0). Proof. apply tctx_split_ptr_prod. - - intros. apply tctx_split_shr_bor_prod2. - - intros. apply shr_bor_is_ptr. + - intros. apply tctx_split_shr_prod2. + - intros. apply shr_is_ptr. Qed. - Lemma tctx_merge_shr_bor_prod E L κ tyl : + Lemma tctx_merge_shr_prod E L κ tyl : tyl ≠[] → ∀ p, tctx_incl E L (hasty_ptr_offsets p (shr_bor κ) tyl 0) - [p â— shr_bor κ $ product tyl]. + [p â— &shr{κ} product tyl]. Proof. intros. apply tctx_merge_ptr_prod; try done. - apply _. - - intros. apply tctx_merge_shr_bor_prod2. - - intros. apply shr_bor_is_ptr. + - intros. apply tctx_merge_shr_prod2. + - intros. apply shr_is_ptr. + Qed. + + (* [tctx_extract] stuff. *) + + (* We do not state the extraction lemmas directly, because we want the + automation system to be able to perform e.g., borrowing or splitting after + splitting. *) + Lemma tctx_extract_split_own_prod2 E L p p' n ty ty1 ty2 T T' : + tctx_extract_hasty E L p' ty [p â— own n ty1; p +â‚— #ty1.(ty_size) â— own n ty2] T' → + tctx_extract_hasty E L p' ty ((p â— own n $ product2 ty1 ty2) :: T) (T' ++ T) . + Proof. + unfold tctx_extract_hasty. intros ?. apply (tctx_incl_frame_r T [_] (_::_)). + by rewrite tctx_split_own_prod2. + Qed. + + Lemma tctx_extract_split_uniq_prod2 E L p p' κ ty ty1 ty2 T T' : + tctx_extract_hasty E L p' ty + [p â— &uniq{κ}ty1; p +â‚— #ty1.(ty_size) â— &uniq{κ}ty2] T' → + tctx_extract_hasty E L p' ty ((p â— &uniq{κ} product2 ty1 ty2) :: T) (T' ++ T) . + Proof. + unfold tctx_extract_hasty=>?. apply (tctx_incl_frame_r T [_] (_::_)). + by rewrite tctx_split_uniq_prod2. + Qed. + + Lemma tctx_extract_split_shr_prod2 E L p p' κ ty ty1 ty2 T T' : + tctx_extract_hasty E L p' ty + [p â— &shr{κ}ty1; p +â‚— #ty1.(ty_size) â— &shr{κ}ty2] T' → + tctx_extract_hasty E L p' ty ((p â— &shr{κ} product2 ty1 ty2) :: T) + ((p â— &shr{κ} product2 ty1 ty2) :: T). + Proof. + unfold tctx_extract_hasty=>?. apply (tctx_incl_frame_r _ [_] [_;_]). + rewrite {1}copy_tctx_incl. apply (tctx_incl_frame_r _ [_] [_]). + rewrite tctx_split_shr_prod2 -(contains_tctx_incl _ _ [p' â— ty]) //. + apply contains_skip, contains_nil_l. + Qed. + + Lemma tctx_extract_split_own_prod E L p p' n ty tyl T T' : + tctx_extract_hasty E L p' ty (hasty_ptr_offsets p (own n) tyl 0) T' → + tctx_extract_hasty E L p' ty ((p â— own n $ Î tyl) :: T) (T' ++ T). + Proof. + unfold tctx_extract_hasty=>?. apply (tctx_incl_frame_r T [_] (_::_)). + by rewrite tctx_split_own_prod. + Qed. + + Lemma tctx_extract_split_uniq_prod E L p p' κ ty tyl T T' : + tctx_extract_hasty E L p' ty (hasty_ptr_offsets p (uniq_bor κ) tyl 0) T' → + tctx_extract_hasty E L p' ty ((p â— &uniq{κ} Î tyl) :: T) (T' ++ T). + Proof. + unfold tctx_extract_hasty=>?. apply (tctx_incl_frame_r T [_] (_::_)). + by rewrite tctx_split_uniq_prod. + Qed. + + Lemma tctx_extract_split_shr_prod E L p p' κ ty tyl T T' : + tctx_extract_hasty E L p' ty (hasty_ptr_offsets p (shr_bor κ) tyl 0) T' → + tctx_extract_hasty E L p' ty ((p â— &shr{κ} Î tyl) :: T) ((p â— &shr{κ} Î tyl) :: T). + Proof. + unfold tctx_extract_hasty=>?. apply (tctx_incl_frame_r _ [_] [_;_]). + rewrite {1}copy_tctx_incl. apply (tctx_incl_frame_r _ [_] [_]). + rewrite tctx_split_shr_prod -(contains_tctx_incl _ _ [p' â— ty]) //. + apply contains_skip, contains_nil_l. Qed. End product_split. + +Hint Resolve tctx_extract_split_own_prod2 tctx_extract_split_uniq_prod2 + tctx_extract_split_shr_prod2 tctx_extract_split_own_prod + tctx_extract_split_uniq_prod tctx_extract_split_shr_prod : lrust_typing. diff --git a/theories/typing/type_context.v b/theories/typing/type_context.v index b9a465578b9bbe695659d0d9bef3ecefea5b7eb2..3c5450f98c6eff25d407d92c94139d765ce2254a 100644 --- a/theories/typing/type_context.v +++ b/theories/typing/type_context.v @@ -182,6 +182,7 @@ Section type_context. ∀ tid q1 q2, lft_ctx -∗ elctx_interp E q1 -∗ llctx_interp L q2 -∗ tctx_interp tid T1 ={⊤}=∗ elctx_interp E q1 ∗ llctx_interp L q2 ∗ tctx_interp tid T2. + Global Instance : ∀ E L, RewriteRelation (tctx_incl E L). Global Instance tctx_incl_preorder E L : PreOrder (tctx_incl E L). Proof. @@ -205,10 +206,14 @@ Section type_context. iMod (Hincl1 with "LFT HE HL H1") as "(HE & HL & $)". iApply (Hincl2 with "LFT HE HL H2"). Qed. - Lemma tctx_incl_frame_l E L T T1 T2 : + Global Instance tctx_incl_cons E L x : + Proper (tctx_incl E L ==> tctx_incl E L) (cons x). + Proof. by apply (tctx_incl_app E L [_] [_]). Qed. + + Lemma tctx_incl_frame_l {E L} T T1 T2 : tctx_incl E L T1 T2 → tctx_incl E L (T++T1) (T++T2). Proof. by apply tctx_incl_app. Qed. - Lemma tctx_incl_frame_r E L T T1 T2 : + Lemma tctx_incl_frame_r {E L} T T1 T2 : tctx_incl E L T1 T2 → tctx_incl E L (T1++T) (T2++T). Proof. by intros; apply tctx_incl_app. Qed. @@ -223,8 +228,8 @@ Section type_context. (p â— ty)%TC ∈ T → tctx_incl E L T ((p â— ty) :: T). Proof. remember (p â— ty)%TC. induction 1 as [|???? IH]; subst. - - apply (tctx_incl_frame_r E L _ [_] [_;_]), copy_tctx_incl, _. - - etrans. by apply (tctx_incl_frame_l E L [_]), IH, reflexivity. + - apply (tctx_incl_frame_r _ [_] [_;_]), copy_tctx_incl, _. + - etrans. by apply (tctx_incl_frame_l [_]), IH, reflexivity. apply contains_tctx_incl, contains_swap. Qed. @@ -246,23 +251,19 @@ Section type_context. Lemma tctx_extract_hasty_cons E L p ty T T' x : tctx_extract_hasty E L p ty T T' → tctx_extract_hasty E L p ty (x::T) (x::T'). - Proof. - move=> /(tctx_incl_frame_l E L [x]) /= Hincl. rewrite /tctx_extract_hasty. - etrans; first done. apply contains_tctx_incl, contains_swap. - Qed. + Proof. unfold tctx_extract_hasty=>->. apply contains_tctx_incl, contains_swap. Qed. Lemma tctx_extract_hasty_here_copy E L p ty ty' T `{!Copy ty} : subtype E L ty ty' → tctx_extract_hasty E L p ty' ((p â— ty)::T) ((p â— ty)::T). Proof. - intros. apply (tctx_incl_frame_r E L _ [_] [_;_]). + intros. apply (tctx_incl_frame_r _ [_] [_;_]). etrans; first by apply copy_tctx_incl, _. - by apply (tctx_incl_frame_r E L _ [_] [_]), subtype_tctx_incl. + by apply (tctx_incl_frame_r _ [_] [_]), subtype_tctx_incl. Qed. Lemma tctx_extract_hasty_here E L p ty ty' T : subtype E L ty ty' → tctx_extract_hasty E L p ty' ((p â— ty)::T) T. Proof. - intros. apply (tctx_incl_frame_r E L _ [_] [_]). - by apply subtype_tctx_incl. + intros. by apply (tctx_incl_frame_r _ [_] [_]), subtype_tctx_incl. Qed. Definition tctx_extract_blocked E L p κ ty T T' : Prop := @@ -271,12 +272,12 @@ Section type_context. tctx_extract_blocked E L p κ ty T T' → tctx_extract_blocked E L p κ ty (x::T) (x::T'). Proof. - move=> /(tctx_incl_frame_l E L [x]) /= Hincl. rewrite /tctx_extract_blocked. + move=> /(tctx_incl_frame_l [x]) /= Hincl. rewrite /tctx_extract_blocked. etrans; first done. apply contains_tctx_incl, contains_swap. Qed. Lemma tctx_extract_blocked_here E L p κ ty T : tctx_extract_blocked E L p κ ty ((p â—{κ} ty)::T) T. - Proof. intros. by apply (tctx_incl_frame_r E L _ [_] [_]). Qed. + Proof. intros. by apply (tctx_incl_frame_r _ [_] [_]). Qed. Definition tctx_extract_ctx E L T T1 T2 : Prop := tctx_incl E L T1 (T++T2). @@ -286,24 +287,18 @@ Section type_context. Lemma tctx_extract_ctx_hasty E L T T1 T2 T3 p ty: tctx_extract_hasty E L p ty T1 T2 → tctx_extract_ctx E L T T2 T3 → tctx_extract_ctx E L ((p â— ty)::T) T1 T3. - Proof. - intros. rewrite /tctx_extract_ctx. etrans; first done. - by apply (tctx_incl_frame_l _ _ [_]). - Qed. + Proof. unfold tctx_extract_ctx, tctx_extract_hasty=>->->//. Qed. Lemma tctx_extract_ctx_blocked E L T T1 T2 T3 p κ ty: tctx_extract_blocked E L p κ ty T1 T2 → tctx_extract_ctx E L T T2 T3 → tctx_extract_ctx E L ((p â—{κ} ty)::T) T1 T3. - Proof. - intros. rewrite /tctx_extract_ctx. etrans; first done. - by apply (tctx_incl_frame_l _ _ [_]). - Qed. + Proof. unfold tctx_extract_ctx, tctx_extract_blocked=>->->//. Qed. Lemma tctx_extract_ctx_incl E L T T' T0: tctx_extract_ctx E L T' T T0 → tctx_incl E L T T'. Proof. - intros. etrans; first done. rewrite {2}(app_nil_end T'). - apply tctx_incl_frame_l, contains_tctx_incl, contains_nil_l. + unfold tctx_extract_ctx=>->. + by apply contains_tctx_incl, contains_inserts_r. Qed. (* Unblocking a type context. *) diff --git a/theories/typing/uniq_bor.v b/theories/typing/uniq_bor.v index 6795ade5c22652a29f31c58009627e8e9b708db0..bc8db8522fcaf7d706d839aa9097d3f860d97fe9 100644 --- a/theories/typing/uniq_bor.v +++ b/theories/typing/uniq_bor.v @@ -195,11 +195,10 @@ Section typing. tctx_extract_hasty E L p (&shr{κ}ty) ((p â— &uniq{κ'}ty')::T) ((p â— &shr{κ}ty')::(p â—{κ} &uniq{κ'}ty')::T). Proof. - intros. apply (tctx_incl_frame_r E L _ [_] [_;_;_]). etrans. - { by apply tctx_reborrow_uniq. } - apply (tctx_incl_frame_r E L _ [_] [_;_]). etrans. - by apply tctx_share. etrans. by apply copy_tctx_incl, _. - by apply (tctx_incl_frame_r E L _ [_] [_]), subtype_tctx_incl, shr_mono'. + intros. apply (tctx_incl_frame_r _ [_] [_;_;_]). + rewrite tctx_reborrow_uniq //. apply (tctx_incl_frame_r _ [_] [_;_]). + rewrite tctx_share // {1}copy_tctx_incl. + by apply (tctx_incl_frame_r _ [_] [_]), subtype_tctx_incl, shr_mono'. Qed. Lemma tctx_extract_hasty_reborrow E L p ty ty' κ κ' T : @@ -207,9 +206,8 @@ Section typing. tctx_extract_hasty E L p (&uniq{κ'}ty) ((p â— &uniq{κ}ty')::T) ((p â—{κ'} &uniq{κ}ty')::T). Proof. - intros. apply (tctx_incl_frame_r E L _ [_] [_;_]). etrans. - by apply tctx_reborrow_uniq. - by apply (tctx_incl_frame_r E L _ [_] [_]), subtype_tctx_incl, uniq_mono'. + intros. apply (tctx_incl_frame_r _ [_] [_;_]). rewrite tctx_reborrow_uniq //. + by apply (tctx_incl_frame_r _ [_] [_]), subtype_tctx_incl, uniq_mono'. Qed. Lemma read_uniq E L κ ty :