From iris.prelude Require Import gmap gmultiset. From iris.base_logic Require Export derived. From iris.base_logic Require Import big_op. From iris.proofmode Require Import classes class_instances. Set Default Proof Using "Type*". Class Fractional {M} (Φ : Qp → uPred M) := fractional p q : Φ (p + q)%Qp ⊣⊢ Φ p ∗ Φ q. Class AsFractional {M} (P : uPred M) (Φ : Qp → uPred M) (q : Qp) := { as_fractional : P ⊣⊢ Φ q; as_fractional_fractional :> Fractional Φ }. Arguments fractional {_ _ _} _ _. Hint Mode AsFractional - + - - : typeclass_instances. Hint Mode AsFractional - - + + : typeclass_instances. Section fractional. Context {M : ucmraT}. Implicit Types P Q : uPred M. Implicit Types Φ : Qp → uPred M. Implicit Types p q : Qp. Lemma fractional_split `{!Fractional Φ} p q : Φ (p + q)%Qp ⊢ Φ p ∗ Φ q. Proof. by rewrite fractional. Qed. Lemma fractional_combine `{!Fractional Φ} p q : Φ p ∗ Φ q ⊢ Φ (p + q)%Qp. Proof. by rewrite fractional. Qed. Lemma fractional_half_equiv `{!Fractional Φ} p : Φ p ⊣⊢ Φ (p/2)%Qp ∗ Φ (p/2)%Qp. Proof. by rewrite -(fractional (p/2) (p/2)) Qp_div_2. Qed. Lemma fractional_half `{!Fractional Φ} p : Φ p ⊢ Φ (p/2)%Qp ∗ Φ (p/2)%Qp. Proof. by rewrite fractional_half_equiv. Qed. Lemma half_fractional `{!Fractional Φ} p q : Φ (p/2)%Qp ∗ Φ (p/2)%Qp ⊢ Φ p. Proof. by rewrite -fractional_half_equiv. Qed. (** Fractional and logical connectives *) Global Instance persistent_fractional P : PersistentP P → Fractional (λ _, P). Proof. intros HP q q'. by apply uPred.always_sep_dup. Qed. Global Instance fractional_sep Φ Ψ : Fractional Φ → Fractional Ψ → Fractional (λ q, Φ q ∗ Ψ q)%I. Proof. intros ?? q q'. rewrite !fractional -!assoc. f_equiv. rewrite !assoc. f_equiv. by rewrite comm. Qed. Global Instance fractional_big_sepL {A} l Ψ : (∀ k (x : A), Fractional (Ψ k x)) → Fractional (M:=M) (λ q, [∗ list] k↦x ∈ l, Ψ k x q)%I. Proof. intros ? q q'. rewrite -big_sepL_sepL. by setoid_rewrite fractional. Qed. Global Instance fractional_big_sepM `{Countable K} {A} (m : gmap K A) Ψ : (∀ k (x : A), Fractional (Ψ k x)) → Fractional (M:=M) (λ q, [∗ map] k↦x ∈ m, Ψ k x q)%I. Proof. intros ? q q'. rewrite -big_sepM_sepM. by setoid_rewrite fractional. Qed. Global Instance fractional_big_sepS `{Countable A} (X : gset A) Ψ : (∀ x, Fractional (Ψ x)) → Fractional (M:=M) (λ q, [∗ set] x ∈ X, Ψ x q)%I. Proof. intros ? q q'. rewrite -big_sepS_sepS. by setoid_rewrite fractional. Qed. Global Instance fractional_big_sepMS `{Countable A} (X : gmultiset A) Ψ : (∀ x, Fractional (Ψ x)) → Fractional (M:=M) (λ q, [∗ mset] x ∈ X, Ψ x q)%I. Proof. intros ? q q'. rewrite -big_sepMS_sepMS. by setoid_rewrite fractional. Qed. (** Mult instances *) Global Instance mult_fractional_l Φ Ψ p : (∀ q, AsFractional (Φ q) Ψ (q * p)) → Fractional Φ. Proof. intros H q q'. rewrite ->!as_fractional, Qp_mult_plus_distr_l. by apply H. Qed. Global Instance mult_fractional_r Φ Ψ p : (∀ q, AsFractional (Φ q) Ψ (p * q)) → Fractional Φ. Proof. intros H q q'. rewrite ->!as_fractional, Qp_mult_plus_distr_r. by apply H. Qed. (* REMARK: These two instances do not work in either direction of the search: - In the forward direction, they make the search not terminate - In the backward direction, the higher order unification of Φ with the goal does not work. *) Instance mult_as_fractional_l P Φ p q : AsFractional P Φ (q * p) → AsFractional P (λ q, Φ (q * p)%Qp) q. Proof. intros H. split. apply H. eapply (mult_fractional_l _ Φ p). split. done. apply H. Qed. Instance mult_as_fractional_r P Φ p q : AsFractional P Φ (p * q) → AsFractional P (λ q, Φ (p * q)%Qp) q. Proof. intros H. split. apply H. eapply (mult_fractional_r _ Φ p). split. done. apply H. Qed. (** Proof mode instances *) Global Instance from_sep_fractional_fwd P P1 P2 Φ q1 q2 : AsFractional P Φ (q1 + q2) → AsFractional P1 Φ q1 → AsFractional P2 Φ q2 → FromSep P P1 P2. Proof. by rewrite /FromSep=>-[-> ->] [-> _] [-> _]. Qed. Global Instance from_sep_fractional_bwd P P1 P2 Φ q1 q2 : AsFractional P1 Φ q1 → AsFractional P2 Φ q2 → AsFractional P Φ (q1 + q2) → FromSep P P1 P2 | 10. Proof. by rewrite /FromSep=>-[-> _] [-> <-] [-> _]. Qed. Global Instance from_sep_fractional_half_fwd P Q Φ q : AsFractional P Φ q → AsFractional Q Φ (q/2) → FromSep P Q Q | 10. Proof. by rewrite /FromSep -{1}(Qp_div_2 q)=>-[-> ->] [-> _]. Qed. Global Instance from_sep_fractional_half_bwd P Q Φ q : AsFractional P Φ (q/2) → AsFractional Q Φ q → FromSep Q P P. Proof. rewrite /FromSep=>-[-> <-] [-> _]. by rewrite Qp_div_2. Qed. Global Instance into_and_fractional P P1 P2 Φ q1 q2 : AsFractional P Φ (q1 + q2) → AsFractional P1 Φ q1 → AsFractional P2 Φ q2 → IntoAnd false P P1 P2. Proof. by rewrite /IntoAnd=>-[-> ->] [-> _] [-> _]. Qed. Global Instance into_and_fractional_half P Q Φ q : AsFractional P Φ q → AsFractional Q Φ (q/2) → IntoAnd false P Q Q | 100. Proof. by rewrite /IntoAnd -{1}(Qp_div_2 q)=>-[->->][-> _]. Qed. (* The instance [frame_fractional] can be tried at all the nodes of the proof search. The proof search then fails almost always on [AsFractional R Φ r], but the slowdown is still noticeable. For that reason, we factorize the three instances that could ave been defined for that purpose into one. *) Inductive FrameFractionalHyps R Φ RES : Qp → Qp → Prop := | frame_fractional_hyps_l Q p p' r: Frame R (Φ p) Q → MakeSep Q (Φ p') RES → FrameFractionalHyps R Φ RES r (p + p') | frame_fractional_hyps_r Q p p' r: Frame R (Φ p') Q → MakeSep Q (Φ p) RES → FrameFractionalHyps R Φ RES r (p + p') | frame_fractional_hyps_half p: AsFractional RES Φ (p/2)%Qp → FrameFractionalHyps R Φ RES (p/2)%Qp p. Existing Class FrameFractionalHyps. Global Existing Instances frame_fractional_hyps_l frame_fractional_hyps_r frame_fractional_hyps_half. Global Instance frame_fractional R r Φ P p RES: AsFractional R Φ r → AsFractional P Φ p → FrameFractionalHyps R Φ RES r p → Frame R P RES. Proof. rewrite /Frame=>-[HR _][->?]H. revert H HR=>-[Q p0 p0' r0|Q p0 p0' r0|p0]. - rewrite fractional=><-<-. by rewrite assoc. - rewrite fractional=><-<-=>_. rewrite (comm _ Q (Φ p0)) !assoc. f_equiv. by rewrite comm. - move=>-[-> _]->. by rewrite -fractional Qp_div_2. Qed. End fractional.