From iris.algebra Require Import auth gmap. From iris.base_logic Require Export gen_heap. From iris.base_logic.lib Require Export proph_map. From iris.program_logic Require Export weakestpre. From iris.program_logic Require Import ectx_lifting total_ectx_lifting. From iris.heap_lang Require Export lang. From iris.heap_lang Require Import tactics. From iris.proofmode Require Import tactics. From stdpp Require Import fin_maps. Set Default Proof Using "Type". Class heapG Σ := HeapG { heapG_invG : invG Σ; heapG_gen_heapG :> gen_heapG loc val Σ; heapG_proph_mapG :> proph_mapG proph_id val Σ }. Instance heapG_irisG `{!heapG Σ} : irisG heap_lang Σ := { iris_invG := heapG_invG; state_interp σ κs _ := (gen_heap_ctx σ.(heap) ∗ proph_map_ctx κs σ.(used_proph_id))%I; fork_post _ := True%I; }. (** Override the notations so that scopes and coercions work out *) Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V) (at level 20, q at level 50, format "l ↦{ q } v") : bi_scope. Notation "l ↦ v" := (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : bi_scope. Notation "l ↦{ q } -" := (∃ v, l ↦{q} v)%I (at level 20, q at level 50, format "l ↦{ q } -") : bi_scope. Notation "l ↦ -" := (l ↦{1} -)%I (at level 20) : bi_scope. (** The tactic [inv_head_step] performs inversion on hypotheses of the shape [head_step]. The tactic will discharge head-reductions starting from values, and simplifies hypothesis related to conversions from and to values, and finite map operations. This tactic is slightly ad-hoc and tuned for proving our lifting lemmas. *) Ltac inv_head_step := repeat match goal with | _ => progress simplify_map_eq/= (* simplify memory stuff *) | H : to_val _ = Some _ |- _ => apply of_to_val in H | H : head_step ?e _ _ _ _ _ |- _ => try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable and can thus better be avoided. *) inversion H; subst; clear H end. Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl : core. Local Hint Extern 0 (head_reducible_no_obs _ _) => eexists _, _, _; simpl : core. (* [simpl apply] is too stupid, so we need extern hints here. *) Local Hint Extern 1 (head_step _ _ _ _ _ _) => econstructor : core. Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasSucS : core. Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasFailS : core. Local Hint Extern 0 (head_step (AllocN _ _) _ _ _ _ _) => apply alloc_fresh : core. Local Hint Extern 0 (head_step NewProph _ _ _ _ _) => apply new_proph_id_fresh : core. Local Hint Resolve to_of_val : core. Instance into_val_val v : IntoVal (Val v) v. Proof. done. Qed. Instance as_val_val v : AsVal (Val v). Proof. by eexists. Qed. Local Ltac solve_atomic := apply strongly_atomic_atomic, ectx_language_atomic; [inversion 1; naive_solver |apply ectxi_language_sub_redexes_are_values; intros [] **; naive_solver]. Instance alloc_atomic s v w : Atomic s (AllocN (Val v) (Val w)). Proof. solve_atomic. Qed. Instance load_atomic s v : Atomic s (Load (Val v)). Proof. solve_atomic. Qed. Instance store_atomic s v1 v2 : Atomic s (Store (Val v1) (Val v2)). Proof. solve_atomic. Qed. Instance cas_atomic s v0 v1 v2 : Atomic s (CAS (Val v0) (Val v1) (Val v2)). Proof. solve_atomic. Qed. Instance faa_atomic s v1 v2 : Atomic s (FAA (Val v1) (Val v2)). Proof. solve_atomic. Qed. Instance fork_atomic s e : Atomic s (Fork e). Proof. solve_atomic. Qed. Instance skip_atomic s : Atomic s Skip. Proof. solve_atomic. Qed. Instance new_proph_atomic s : Atomic s NewProph. Proof. solve_atomic. Qed. Instance resolve_proph_atomic s v1 v2 : Atomic s (ResolveProph (Val v1) (Val v2)). Proof. solve_atomic. Qed. Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto. Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step. Local Ltac solve_pure_exec := subst; intros ?; apply nsteps_once, pure_head_step_pure_step; constructor; [solve_exec_safe | solve_exec_puredet]. (** The behavior of the various [wp_] tactics with regard to lambda differs in the following way: - [wp_pures] does *not* reduce lambdas/recs that are hidden behind a definition. - [wp_rec] and [wp_lam] reduce lambdas/recs that are hidden behind a definition. To realize this behavior, we define the class [AsRecV v f x erec], which takes a value [v] as its input, and turns it into a [RecV f x erec] via the instance [AsRecV_recv : AsRecV (RecV f x e) f x e]. We register this instance via [Hint Extern] so that it is only used if [v] is syntactically a lambda/rec, and not if [v] contains a lambda/rec that is hidden behind a definition. To make sure that [wp_rec] and [wp_lam] do reduce lambdas/recs that are hidden behind a definition, we activate [AsRecV_recv] by hand in these tactics. *) Class AsRecV (v : val) (f x : binder) (erec : expr) := as_recv : v = RecV f x erec. Hint Mode AsRecV ! - - - : typeclass_instances. Definition AsRecV_recv f x e : AsRecV (RecV f x e) f x e := eq_refl. Hint Extern 0 (AsRecV (RecV _ _ _) _ _ _) => apply AsRecV_recv : typeclass_instances. Instance pure_recc f x (erec : expr) : PureExec True 1 (Rec f x erec) (Val $ RecV f x erec). Proof. solve_pure_exec. Qed. Instance pure_pairc (v1 v2 : val) : PureExec True 1 (Pair (Val v1) (Val v2)) (Val $ PairV v1 v2). Proof. solve_pure_exec. Qed. Instance pure_injlc (v : val) : PureExec True 1 (InjL $ Val v) (Val $ InjLV v). Proof. solve_pure_exec. Qed. Instance pure_injrc (v : val) : PureExec True 1 (InjR $ Val v) (Val $ InjRV v). Proof. solve_pure_exec. Qed. Instance pure_beta f x (erec : expr) (v1 v2 : val) `{!AsRecV v1 f x erec} : PureExec True 1 (App (Val v1) (Val v2)) (subst' x v2 (subst' f v1 erec)). Proof. unfold AsRecV in *. solve_pure_exec. Qed. Instance pure_unop op v v' : PureExec (un_op_eval op v = Some v') 1 (UnOp op (Val v)) (Val v'). Proof. solve_pure_exec. Qed. Instance pure_binop op v1 v2 v' : PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op (Val v1) (Val v2)) (Val v'). Proof. solve_pure_exec. Qed. Instance pure_if_true e1 e2 : PureExec True 1 (If (Val $ LitV $ LitBool true) e1 e2) e1. Proof. solve_pure_exec. Qed. Instance pure_if_false e1 e2 : PureExec True 1 (If (Val $ LitV $ LitBool false) e1 e2) e2. Proof. solve_pure_exec. Qed. Instance pure_fst v1 v2 : PureExec True 1 (Fst (Val $ PairV v1 v2)) (Val v1). Proof. solve_pure_exec. Qed. Instance pure_snd v1 v2 : PureExec True 1 (Snd (Val $ PairV v1 v2)) (Val v2). Proof. solve_pure_exec. Qed. Instance pure_case_inl v e1 e2 : PureExec True 1 (Case (Val $ InjLV v) e1 e2) (App e1 (Val v)). Proof. solve_pure_exec. Qed. Instance pure_case_inr v e1 e2 : PureExec True 1 (Case (Val $ InjRV v) e1 e2) (App e2 (Val v)). Proof. solve_pure_exec. Qed. Section lifting. Context `{!heapG Σ}. Implicit Types P Q : iProp Σ. Implicit Types Φ : val → iProp Σ. Implicit Types efs : list expr. Implicit Types σ : state. (** Fork: Not using Texan triples to avoid some unnecessary [True] *) Lemma wp_fork s E e Φ : ▷ WP e @ s; ⊤ {{ _, True }} -∗ ▷ Φ (LitV LitUnit) -∗ WP Fork e @ s; E {{ Φ }}. Proof. iIntros "He HΦ". iApply wp_lift_atomic_head_step; [done|]. iIntros (σ1 κ κs n) "Hσ !>"; iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. by iFrame. Qed. Lemma twp_fork s E e Φ : WP e @ s; ⊤ [{ _, True }] -∗ Φ (LitV LitUnit) -∗ WP Fork e @ s; E [{ Φ }]. Proof. iIntros "He HΦ". iApply twp_lift_atomic_head_step; [done|]. iIntros (σ1 κs n) "Hσ !>"; iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step. by iFrame. Qed. Definition array (l : loc) (vs : list val) : iProp Σ := ([∗ list] i ↦ v ∈ vs, loc_add l i ↦ v)%I. Notation "l ↦∗ vs" := (array l vs) (at level 20, format "l ↦∗ vs") : bi_scope. Lemma array_nil l : l ↦∗ [] ⊣⊢ emp. Proof. by rewrite /array. Qed. Lemma array_singleton l v : l ↦∗ [v] ⊣⊢ l ↦ v. Proof. by rewrite /array /= right_id loc_add_0. Qed. Lemma array_app l vs ws : l ↦∗ (vs ++ ws) ⊣⊢ l ↦∗ vs ∗ (loc_add l (length vs)) ↦∗ ws. Proof. rewrite /array big_sepL_app. setoid_rewrite Nat2Z.inj_add. by setoid_rewrite loc_add_assoc. Qed. Lemma array_cons l v vs : l ↦∗ (v :: vs) ⊣⊢ l ↦ v ∗ (l +ₗ 1) ↦∗ vs. Proof. rewrite /array big_sepL_cons loc_add_0. setoid_rewrite loc_add_assoc. setoid_rewrite Nat2Z.inj_succ. by setoid_rewrite Z.add_1_l. Qed. Lemma heap_array_to_array l vs : ([∗ map] i ↦ v ∈ heap_array l vs, i ↦ v)%I -∗ l ↦∗ vs. Proof. iIntros "Hvs". iInduction vs as [|v vs] "IH" forall (l); simpl. { by rewrite big_opM_empty /array big_opL_nil. } rewrite big_opM_union; last first. { apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _]. intros (j&?&Hjl&_)%heap_array_lookup. rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl; apply loc_add_inj in Hjl; lia. } rewrite array_cons. rewrite big_opM_singleton; iDestruct "Hvs" as "[$ Hvs]". by iApply "IH". Qed. (** Heap *) Lemma wp_allocN s E v n : 0 < n → {{{ True }}} AllocN ((Val $ LitV $ LitInt $ n)) (Val v) @ s; E {{{ l, RET LitV (LitLoc l); l ↦∗ (replicate (Z.to_nat n) v) }}}. Proof. iIntros (Hn Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs k) "[Hσ Hκs] !>"; iSplit; first by destruct n; auto with lia. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_alloc_gen with "Hσ") as "[Hσ Hl]". { apply (heap_array_map_disjoint _ l (replicate (Z.to_nat n) v)); eauto. rewrite replicate_length Z2Nat.id; auto with lia. } iModIntro; iSplit; auto. iFrame. iApply "HΦ". by iApply heap_array_to_array. Qed. Lemma twp_allocN s E v n : 0 < n → [[{ True }]] AllocN ((Val $ LitV $ LitInt $ n)) (Val v) @ s; E [[{ l, RET LitV (LitLoc l); l ↦∗ (replicate (Z.to_nat n) v) }]]. Proof. iIntros (Hn Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs k) "[Hσ Hκs] !>"; iSplit; first by destruct n; auto with lia. iIntros (κ v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_alloc_gen with "Hσ") as "[Hσ Hl]". { apply (heap_array_map_disjoint _ l (replicate (Z.to_nat n) v)); eauto. rewrite replicate_length Z2Nat.id; auto with lia. } iModIntro; iSplit; auto. iFrame; iSplit; auto. iApply "HΦ". by iApply heap_array_to_array. Qed. Lemma wp_alloc s E v : {{{ True }}} Alloc (Val v) @ s; E {{{ l, RET LitV (LitLoc l); l ↦ v }}}. Proof. iIntros (Φ) "_ HΦ". iApply wp_allocN; auto with lia. iNext; iIntros (l) "H". iApply "HΦ". by rewrite array_singleton. Qed. Lemma twp_alloc s E v : [[{ True }]] Alloc (Val v) @ s; E [[{ l, RET LitV (LitLoc l); l ↦ v }]]. Proof. iIntros (Φ) "_ HΦ". iApply twp_allocN; auto with lia. iIntros (l) "H". iApply "HΦ". by rewrite array_singleton. Qed. Lemma wp_load s E l q v : {{{ ▷ l ↦{q} v }}} Load (Val $ LitV $ LitLoc l) @ s; E {{{ RET v; l ↦{q} v }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma twp_load s E l q v : [[{ l ↦{q} v }]] Load (Val $ LitV $ LitLoc l) @ s; E [[{ RET v; l ↦{q} v }]]. Proof. iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_store s E l v' v : {{{ ▷ l ↦ v' }}} Store (Val $ LitV (LitLoc l)) (Val v) @ s; E {{{ RET LitV LitUnit; l ↦ v }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iFrame. by iApply "HΦ". Qed. Lemma twp_store s E l v' v : [[{ l ↦ v' }]] Store (Val $ LitV $ LitLoc l) (Val v) @ s; E [[{ RET LitV LitUnit; l ↦ v }]]. Proof. iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_cas_fail s E l q v' v1 v2 : v' ≠ v1 → vals_cas_compare_safe v' v1 → {{{ ▷ l ↦{q} v' }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E {{{ RET LitV (LitBool false); l ↦{q} v' }}}. Proof. iIntros (?? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma twp_cas_fail s E l q v' v1 v2 : v' ≠ v1 → vals_cas_compare_safe v' v1 → [[{ l ↦{q} v' }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E [[{ RET LitV (LitBool false); l ↦{q} v' }]]. Proof. iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_cas_suc s E l v1 v2 : vals_cas_compare_safe v1 v1 → {{{ ▷ l ↦ v1 }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E {{{ RET LitV (LitBool true); l ↦ v2 }}}. Proof. iIntros (? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iFrame. by iApply "HΦ". Qed. Lemma twp_cas_suc s E l v1 v2 : vals_cas_compare_safe v1 v1 → [[{ l ↦ v1 }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E [[{ RET LitV (LitBool true); l ↦ v2 }]]. Proof. iIntros (? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_faa s E l i1 i2 : {{{ ▷ l ↦ LitV (LitInt i1) }}} FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E {{{ RET LitV (LitInt i1); l ↦ LitV (LitInt (i1 + i2)) }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iFrame. by iApply "HΦ". Qed. Lemma twp_faa s E l i1 i2 : [[{ l ↦ LitV (LitInt i1) }]] FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E [[{ RET LitV (LitInt i1); l ↦ LitV (LitInt (i1 + i2)) }]]. Proof. iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ e2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_new_proph s E : {{{ True }}} NewProph @ s; E {{{ vs p, RET (LitV (LitProphecy p)); proph p vs }}}. Proof. iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs n) "[Hσ HR] !>". iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep). inv_head_step. iMod (proph_map_new_proph p with "HR") as "[HR Hp]"; first done. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma wp_resolve_proph s E p vs v : {{{ proph p vs }}} ResolveProph (Val $ LitV $ LitProphecy p) (Val v) @ s; E {{{ vs', RET (LitV LitUnit); ⌜vs = v::vs'⌝ ∗ proph p vs' }}}. Proof. iIntros (Φ) "Hp HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs n) "[Hσ HR] !>". iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep). inv_head_step. iMod (proph_map_resolve_proph p v κs with "[HR Hp]") as "HPost"; first by iFrame. iModIntro. iFrame. iSplitR; first done. iDestruct "HPost" as (vs') "[HEq [HR Hp]]". iFrame. iApply "HΦ". iFrame. Qed. End lifting. Notation "l ↦∗ vs" := (array l vs) (at level 20, format "l ↦∗ vs") : bi_scope.