Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Simon Spies
Iris
Commits
e393429d
Commit
e393429d
authored
Sep 18, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Show that heap_lang expressions are countable.
parent
0100a7b1
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
79 additions
and
1 deletion
+79
-1
opam.pins
opam.pins
+1
-1
theories/heap_lang/lang.v
theories/heap_lang/lang.v
+78
-0
No files found.
opam.pins
View file @
e393429d
coq-stdpp https://gitlab.mpi-sws.org/robbertkrebbers/coq-stdpp
7d7c9871312719a4e1296d52eb95ea0ac959249f
coq-stdpp https://gitlab.mpi-sws.org/robbertkrebbers/coq-stdpp
d167cced10a5db03b70318be4ffdf340e6bc52ca
theories/heap_lang/lang.v
View file @
e393429d
...
...
@@ -139,6 +139,84 @@ Proof.
refine
(
λ
v
v'
,
cast_if
(
decide
(
of_val
v
=
of_val
v'
)))
;
abstract
naive_solver
.
Defined
.
Instance
base_lit_countable
:
Countable
base_lit
.
Proof
.
refine
(
inj_countable'
(
λ
l
,
match
l
with
|
LitInt
n
=>
inl
(
inl
n
)
|
LitBool
b
=>
inl
(
inr
b
)
|
LitUnit
=>
inr
(
inl
())
|
LitLoc
l
=>
inr
(
inr
l
)
end
)
(
λ
l
,
match
l
with
|
inl
(
inl
n
)
=>
LitInt
n
|
inl
(
inr
b
)
=>
LitBool
b
|
inr
(
inl
())
=>
LitUnit
|
inr
(
inr
l
)
=>
LitLoc
l
end
)
_
)
;
by
intros
[].
Qed
.
Instance
un_op_finite
:
Countable
un_op
.
Proof
.
refine
(
inj_countable'
(
λ
op
,
match
op
with
NegOp
=>
0
|
MinusUnOp
=>
1
end
)
(
λ
n
,
match
n
with
0
=>
NegOp
|
_
=>
MinusUnOp
end
)
_
)
;
by
intros
[].
Qed
.
Instance
bin_op_countable
:
Countable
bin_op
.
Proof
.
refine
(
inj_countable'
(
λ
op
,
match
op
with
|
PlusOp
=>
0
|
MinusOp
=>
1
|
LeOp
=>
2
|
LtOp
=>
3
|
EqOp
=>
4
end
)
(
λ
n
,
match
n
with
|
0
=>
PlusOp
|
1
=>
MinusOp
|
2
=>
LeOp
|
3
=>
LtOp
|
_
=>
EqOp
end
)
_
)
;
by
intros
[].
Qed
.
Instance
binder_countable
:
Countable
binder
.
Proof
.
refine
(
inj_countable'
(
λ
b
,
match
b
with
BNamed
s
=>
Some
s
|
BAnon
=>
None
end
)
(
λ
b
,
match
b
with
Some
s
=>
BNamed
s
|
None
=>
BAnon
end
)
_
)
;
by
intros
[].
Qed
.
Instance
expr_countable
:
Countable
expr
.
Proof
.
set
(
enc
:
=
fix
go
e
:
=
match
e
with
|
Var
x
=>
GenLeaf
(
inl
(
inl
x
))
|
Rec
f
x
e
=>
GenNode
0
[
GenLeaf
(
inl
(
inr
f
))
;
GenLeaf
(
inl
(
inr
x
))
;
go
e
]
|
App
e1
e2
=>
GenNode
1
[
go
e1
;
go
e2
]
|
Lit
l
=>
GenLeaf
(
inr
(
inl
l
))
|
UnOp
op
e
=>
GenNode
2
[
GenLeaf
(
inr
(
inr
(
inl
op
)))
;
go
e
]
|
BinOp
op
e1
e2
=>
GenNode
3
[
GenLeaf
(
inr
(
inr
(
inr
op
)))
;
go
e1
;
go
e2
]
|
If
e0
e1
e2
=>
GenNode
4
[
go
e0
;
go
e1
;
go
e2
]
|
Pair
e1
e2
=>
GenNode
5
[
go
e1
;
go
e2
]
|
Fst
e
=>
GenNode
6
[
go
e
]
|
Snd
e
=>
GenNode
7
[
go
e
]
|
InjL
e
=>
GenNode
8
[
go
e
]
|
InjR
e
=>
GenNode
9
[
go
e
]
|
Case
e0
e1
e2
=>
GenNode
10
[
go
e0
;
go
e1
;
go
e2
]
|
Fork
e
=>
GenNode
11
[
go
e
]
|
Alloc
e
=>
GenNode
12
[
go
e
]
|
Load
e
=>
GenNode
13
[
go
e
]
|
Store
e1
e2
=>
GenNode
14
[
go
e1
;
go
e2
]
|
CAS
e0
e1
e2
=>
GenNode
15
[
go
e0
;
go
e1
;
go
e2
]
end
).
set
(
dec
:
=
fix
go
e
:
=
match
e
with
|
GenLeaf
(
inl
(
inl
x
))
=>
Var
x
|
GenNode
0
[
GenLeaf
(
inl
(
inr
f
))
;
GenLeaf
(
inl
(
inr
x
))
;
e
]
=>
Rec
f
x
(
go
e
)
|
GenNode
1
[
e1
;
e2
]
=>
App
(
go
e1
)
(
go
e2
)
|
GenLeaf
(
inr
(
inl
l
))
=>
Lit
l
|
GenNode
2
[
GenLeaf
(
inr
(
inr
(
inl
op
)))
;
e
]
=>
UnOp
op
(
go
e
)
|
GenNode
3
[
GenLeaf
(
inr
(
inr
(
inr
op
)))
;
e1
;
e2
]
=>
BinOp
op
(
go
e1
)
(
go
e2
)
|
GenNode
4
[
e0
;
e1
;
e2
]
=>
If
(
go
e0
)
(
go
e1
)
(
go
e2
)
|
GenNode
5
[
e1
;
e2
]
=>
Pair
(
go
e1
)
(
go
e2
)
|
GenNode
6
[
e
]
=>
Fst
(
go
e
)
|
GenNode
7
[
e
]
=>
Snd
(
go
e
)
|
GenNode
8
[
e
]
=>
InjL
(
go
e
)
|
GenNode
9
[
e
]
=>
InjR
(
go
e
)
|
GenNode
10
[
e0
;
e1
;
e2
]
=>
Case
(
go
e0
)
(
go
e1
)
(
go
e2
)
|
GenNode
11
[
e
]
=>
Fork
(
go
e
)
|
GenNode
12
[
e
]
=>
Alloc
(
go
e
)
|
GenNode
13
[
e
]
=>
Load
(
go
e
)
|
GenNode
14
[
e1
;
e2
]
=>
Store
(
go
e1
)
(
go
e2
)
|
GenNode
15
[
e0
;
e1
;
e2
]
=>
CAS
(
go
e0
)
(
go
e1
)
(
go
e2
)
|
_
=>
Lit
LitUnit
(* dummy *)
end
).
refine
(
inj_countable'
enc
dec
_
).
intros
e
.
induction
e
;
f_equal
/=
;
auto
.
Qed
.
Instance
val_countable
:
Countable
val
.
Proof
.
refine
(
inj_countable
of_val
to_val
_
)
;
auto
using
to_of_val
.
Qed
.
Instance
expr_inhabited
:
Inhabited
expr
:
=
populate
(
Lit
LitUnit
).
Instance
val_inhabited
:
Inhabited
val
:
=
populate
(
LitV
LitUnit
).
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment