Commit 991952fe authored by Robbert Krebbers's avatar Robbert Krebbers

Require `Total R` just for the merge sort theorems that actually need it.

parent 236891e9
......@@ -114,7 +114,7 @@ End sorted.
(** ** Correctness of merge sort *)
Section merge_sort_correct.
Context {A} (R : relation A) `{ x y, Decision (R x y)} `{!Total R}.
Context {A} (R : relation A) `{ x y, Decision (R x y)}.
Lemma list_merge_cons x1 x2 l1 l2 :
list_merge R (x1 :: l1) (x2 :: l2) =
......@@ -127,7 +127,7 @@ Section merge_sort_correct.
destruct 1 as [|x1 l1 IH1], 1 as [|x2 l2 IH2];
rewrite ?list_merge_cons; simpl; repeat case_decide; auto.
Lemma Sorted_list_merge l1 l2 :
Lemma Sorted_list_merge `{!Total R} l1 l2 :
Sorted R l1 Sorted R l2 Sorted R (list_merge R l1 l2).
intros Hl1. revert l2. induction Hl1 as [|x1 l1 IH1];
......@@ -158,7 +158,7 @@ Section merge_sort_correct.
| Some l :: st => l ++ merge_stack_flatten st
Lemma Sorted_merge_list_to_stack st l :
Lemma Sorted_merge_list_to_stack `{!Total R} st l :
merge_stack_Sorted st Sorted R l
merge_stack_Sorted (merge_list_to_stack R st l).
......@@ -172,7 +172,7 @@ Section merge_sort_correct.
revert l. induction st as [|[l'|] st IH]; intros l; simpl; auto.
by rewrite IH, merge_Permutation, (assoc_L _), (comm (++) l).
Lemma Sorted_merge_stack st :
Lemma Sorted_merge_stack `{!Total R} st :
merge_stack_Sorted st Sorted R (merge_stack R st).
Proof. induction 1; simpl; auto using Sorted_list_merge. Qed.
Lemma merge_stack_Permutation st : merge_stack R st merge_stack_flatten st.
......@@ -180,7 +180,7 @@ Section merge_sort_correct.
induction st as [|[] ? IH]; intros; simpl; auto.
by rewrite merge_Permutation, IH.
Lemma Sorted_merge_sort_aux st l :
Lemma Sorted_merge_sort_aux `{!Total R} st l :
merge_stack_Sorted st Sorted R (merge_sort_aux R st l).
revert st. induction l; simpl;
......@@ -194,11 +194,11 @@ Section merge_sort_correct.
- rewrite IH, merge_list_to_stack_Permutation; simpl.
by rewrite Permutation_middle.
Lemma Sorted_merge_sort l : Sorted R (merge_sort R l).
Lemma Sorted_merge_sort `{!Total R} l : Sorted R (merge_sort R l).
Proof. apply Sorted_merge_sort_aux. by constructor. Qed.
Lemma merge_sort_Permutation l : merge_sort R l l.
Proof. unfold merge_sort. by rewrite merge_sort_aux_Permutation. Qed.
Lemma StronglySorted_merge_sort `{!Transitive R} l :
Lemma StronglySorted_merge_sort `{!Transitive R, !Total R} l :
StronglySorted R (merge_sort R l).
Proof. auto using Sorted_StronglySorted, Sorted_merge_sort. Qed.
End merge_sort_correct.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment