Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Simon Spies
Iris
Commits
75ad3b2e
Commit
75ad3b2e
authored
Sep 19, 2016
by
Robbert Krebbers
Browse files
Support for framing pure hypotheses.
This closes issue 32.
parent
6f8c17a5
Changes
5
Hide whitespace changes
Inline
Side-by-side
ProofMode.md
View file @
75ad3b2e
...
...
@@ -81,11 +81,16 @@ Elimination of logical connectives
Separating logic specific tactics
---------------------------------
-
`iFrame "H0 ... Hn"`
: cancel the hypotheses
`H0 ... Hn`
in the goal. The
symbol
`★`
can be used to frame as much of the spatial context as possible,
and the symbol
`#`
can be used to repeatedly frame as much of the persistent
context as possible. When without arguments, it attempts to frame all spatial
hypotheses.
-
`iFrame (t1 .. tn) "H0 ... Hn"`
: cancel the Coq terms (or Coq hypotheses)
`t1 ... tn`
and Iris hypotheses
`H0 ... Hn`
in the goal. Apart from
hypotheses, the following symbols can be used:
+
`%`
: repeatedly frame hypotheses from the Coq context.
+
`#`
: repeatedly frame hypotheses from the persistent context.
+
`★`
: frame as much of the spatial context as possible.
Notice that framing spatial hypotheses makes them disappear, but framing Coq
or persistent hypotheses does not make them disappear.
-
`iCombine "H1" "H2" as "H"`
: turns
`H1 : P1`
and
`H2 : P2`
into
`H : P1 ★ P2`
.
...
...
proofmode/class_instances.v
View file @
75ad3b2e
...
...
@@ -219,6 +219,8 @@ Qed.
(* Frame *)
Global
Instance
frame_here
R
:
Frame
R
R
True
.
Proof
.
by
rewrite
/
Frame
right_id
.
Qed
.
Global
Instance
frame_here_pure
φ
Q
:
FromPure
Q
φ
→
Frame
(
■
φ
)
Q
True
.
Proof
.
rewrite
/
FromPure
/
Frame
=>
->.
by
rewrite
right_id
.
Qed
.
Class
MakeSep
(
P
Q
PQ
:
uPred
M
)
:
=
make_sep
:
P
★
Q
⊣
⊢
PQ
.
Global
Instance
make_sep_true_l
P
:
MakeSep
True
P
P
.
...
...
proofmode/coq_tactics.v
View file @
75ad3b2e
...
...
@@ -685,6 +685,10 @@ Proof.
Qed
.
(** * Framing *)
Lemma
tac_frame_pure
Δ
(
φ
:
Prop
)
P
Q
:
φ
→
Frame
(
■
φ
)
P
Q
→
(
Δ
⊢
Q
)
→
Δ
⊢
P
.
Proof
.
intros
??
->.
by
rewrite
-(
frame
(
■
φ
)
P
)
pure_equiv
//
left_id
.
Qed
.
Lemma
tac_frame
Δ
Δ
'
i
p
R
P
Q
:
envs_lookup_delete
i
Δ
=
Some
(
p
,
R
,
Δ
'
)
→
Frame
R
P
Q
→
((
if
p
then
Δ
else
Δ
'
)
⊢
Q
)
→
Δ
⊢
P
.
...
...
proofmode/tactics.v
View file @
75ad3b2e
...
...
@@ -430,6 +430,11 @@ Tactic Notation "iCombine" constr(H1) constr(H2) "as" constr(H) :=
|
env_cbv
;
reflexivity
||
fail
"iCombine:"
H
"not fresh"
|].
(** Framing *)
Local
Ltac
iFramePure
t
:
=
let
φ
:
=
type
of
t
in
eapply
(
tac_frame_pure
_
_
_
_
t
)
;
[
apply
_
||
fail
"iFrame: cannot frame"
φ
|].
Local
Ltac
iFrameHyp
H
:
=
eapply
tac_frame
with
_
H
_
_
_;
[
env_cbv
;
reflexivity
||
fail
"iFrame:"
H
"not found"
...
...
@@ -437,7 +442,10 @@ Local Ltac iFrameHyp H :=
apply
_
||
fail
"iFrame: cannot frame"
R
|
lazy
iota
beta
].
Local
Ltac
iFramePersistent
:
=
Local
Ltac
iFrameAnyPure
:
=
repeat
match
goal
with
H
:
_
|-
_
=>
iFramePure
H
end
.
Local
Ltac
iFrameAnyPersistent
:
=
let
rec
go
Hs
:
=
match
Hs
with
[]
=>
idtac
|
?H
::
?Hs
=>
repeat
iFrameHyp
H
;
go
Hs
end
in
match
goal
with
...
...
@@ -445,7 +453,7 @@ Local Ltac iFramePersistent :=
let
Hs
:
=
eval
cbv
in
(
env_dom
(
env_persistent
Δ
))
in
go
Hs
end
.
Local
Ltac
iFrameSpatial
:
=
Local
Ltac
iFrame
Any
Spatial
:
=
let
rec
go
Hs
:
=
match
Hs
with
[]
=>
idtac
|
?H
::
?Hs
=>
try
iFrameHyp
H
;
go
Hs
end
in
match
goal
with
...
...
@@ -453,17 +461,60 @@ Local Ltac iFrameSpatial :=
let
Hs
:
=
eval
cbv
in
(
env_dom
(
env_spatial
Δ
))
in
go
Hs
end
.
Tactic
Notation
"iFrame"
:
=
iFrameAnySpatial
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
")"
:
=
iFramePure
t1
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
")"
:
=
iFramePure
t1
;
iFrame
(
t2
).
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
")"
:
=
iFramePure
t1
;
iFrame
(
t2
t3
).
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
")"
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
).
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
constr
(
t5
)
")"
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
t5
).
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
constr
(
t5
)
constr
(
t6
)
")"
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
t5
t6
).
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
constr
(
t5
)
constr
(
t6
)
constr
(
t7
)
")"
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
t5
t6
t7
).
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
constr
(
t5
)
constr
(
t6
)
constr
(
t7
)
constr
(
t8
)
")"
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
t5
t6
t7
t8
).
Tactic
Notation
"iFrame"
constr
(
Hs
)
:
=
let
rec
go
Hs
:
=
match
Hs
with
|
[]
=>
idtac
|
"#"
::
?Hs
=>
iFramePersistent
;
go
Hs
|
"★"
::
?Hs
=>
iFrameSpatial
;
go
Hs
|
"%"
::
?Hs
=>
iFrameAnyPure
;
go
Hs
|
"#"
::
?Hs
=>
iFrameAnyPersistent
;
go
Hs
|
"★"
::
?Hs
=>
iFrameAnySpatial
;
go
Hs
|
?H
::
?Hs
=>
iFrameHyp
H
;
go
Hs
end
in
let
Hs
:
=
words
Hs
in
go
Hs
.
Tactic
Notation
"iFrame"
:
=
iFrameSpatial
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
")"
constr
(
Hs
)
:
=
iFramePure
t1
;
iFrame
Hs
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
")"
constr
(
Hs
)
:
=
iFramePure
t1
;
iFrame
(
t2
)
Hs
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
")"
constr
(
Hs
)
:
=
iFramePure
t1
;
iFrame
(
t2
t3
)
Hs
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
")"
constr
(
Hs
)
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
)
Hs
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
constr
(
t5
)
")"
constr
(
Hs
)
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
t5
)
Hs
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
constr
(
t5
)
constr
(
t6
)
")"
constr
(
Hs
)
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
t5
t6
)
Hs
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
constr
(
t5
)
constr
(
t6
)
constr
(
t7
)
")"
constr
(
Hs
)
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
t5
t6
t7
)
Hs
.
Tactic
Notation
"iFrame"
"("
constr
(
t1
)
constr
(
t2
)
constr
(
t3
)
constr
(
t4
)
constr
(
t5
)
constr
(
t6
)
constr
(
t7
)
constr
(
t8
)
")"
constr
(
Hs
)
:
=
iFramePure
t1
;
iFrame
(
t2
t3
t4
t5
t6
t7
t8
)
Hs
.
(** * Existential *)
Tactic
Notation
"iExists"
uconstr
(
x1
)
:
=
...
...
tests/proofmode.v
View file @
75ad3b2e
...
...
@@ -100,3 +100,7 @@ Section iris.
-
done
.
Qed
.
End
iris
.
Lemma
demo_9
(
M
:
ucmraT
)
(
x
y
z
:
M
)
:
✓
x
→
■
(
y
≡
z
)
⊢
(
✓
x
∧
✓
x
∧
y
≡
z
:
uPred
M
).
Proof
.
iIntros
(
Hv
)
"Hxy"
.
by
iFrame
(
Hv
Hv
)
"Hxy"
.
Qed
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment