Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Simon Spies
Iris
Commits
71fb10bd
Commit
71fb10bd
authored
Jun 21, 2019
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Set `Hint Mode` for `Cofe`.
parent
4f0c1046
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
3 additions
and
2 deletions
+3
-2
theories/algebra/ofe.v
theories/algebra/ofe.v
+2
-1
theories/base_logic/upred.v
theories/base_logic/upred.v
+1
-1
No files found.
theories/algebra/ofe.v
View file @
71fb10bd
...
...
@@ -125,6 +125,7 @@ Class Cofe (A : ofeT) := {
conv_compl
n
c
:
compl
c
≡
{
n
}
≡
c
n
;
}.
Arguments
compl
:
simpl
never
.
Hint
Mode
Cofe
!
:
typeclass_instances
.
Lemma
compl_chain_map
`
{
Cofe
A
,
Cofe
B
}
(
f
:
A
→
B
)
c
`
(
NonExpansive
f
)
:
compl
(
chain_map
f
c
)
≡
f
(
compl
c
).
...
...
@@ -264,7 +265,7 @@ Section limit_preserving.
(
∀
x
,
P
x
↔
Q
x
)
→
LimitPreserving
P
→
LimitPreserving
Q
.
Proof
.
intros
HP
Hlimit
c
?.
apply
HP
,
Hlimit
=>
n
;
by
apply
HP
.
Qed
.
Global
Instance
limit_preserving_const
(
P
:
Prop
)
:
LimitPreserving
(
λ
_
,
P
).
Global
Instance
limit_preserving_const
(
P
:
Prop
)
:
LimitPreserving
(
λ
_
:
A
,
P
).
Proof
.
intros
c
HP
.
apply
(
HP
0
).
Qed
.
Lemma
limit_preserving_discrete
(
P
:
A
→
Prop
)
:
...
...
theories/base_logic/upred.v
View file @
71fb10bd
...
...
@@ -402,7 +402,7 @@ Lemma entails_lim (cP cQ : chain (uPredO M)) :
(
∀
n
,
cP
n
⊢
cQ
n
)
→
compl
cP
⊢
compl
cQ
.
Proof
.
intros
Hlim
;
split
=>
n
m
?
HP
.
eapply
uPred_holds_ne
,
Hlim
,
HP
;
eauto
using
conv_compl
.
eapply
uPred_holds_ne
,
Hlim
,
HP
;
rewrite
?
conv_compl
;
eauto
.
Qed
.
(** Non-expansiveness and setoid morphisms *)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment