Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Simon Spies
Iris
Commits
544400fd
Commit
544400fd
authored
Jun 26, 2018
by
Marianna Rapoport
Committed by
Ralf Jung
Oct 05, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Simpler proof
parent
5c51c26c
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
16 additions
and
28 deletions
+16
-28
theories/heap_lang/lib/coin-flip.v
theories/heap_lang/lib/coin-flip.v
+16
-28
No files found.
theories/heap_lang/lib/coin-flip.v
View file @
544400fd
...
...
@@ -93,26 +93,27 @@ Section prophecy.
(* -- predicates -- *)
is_prophecy
:
proph
->
val
->
iProp
Σ
;
(* -- general properties -- *)
new_prophecy_spec
:
{{{
True
}}}
new_prophecy
#()
{{{
p
,
RET
#
p
;
∃
v
,
is_prophecy
p
#
v
}}}
;
resolve_prophecy_spec
p
v
w
:
{{{
is_prophecy
p
v
}}}
resolve_prophecy
#
p
w
{{{
RET
w
;
⌜
v
=
w
⌝
}}}
new_prophecy_spec
:
{{{
True
}}}
new_prophecy
#()
{{{
p
,
RET
#
p
;
∃
v
,
is_prophecy
p
v
}}}
;
resolve_prophecy_spec
p
v
e
w
:
IntoVal
e
w
->
{{{
is_prophecy
p
v
}}}
resolve_prophecy
#
p
e
{{{
RET
w
;
⌜
v
=
w
⌝
}}}
}.
Context
`
{
pr
:
prophecy
}.
Definition
val_to_bool
v
:
bool
:
=
match
v
with
|
LitV
(
LitBool
b
)
=>
b
|
_
=>
true
end
.
Definition
lateChoice_proph
:
val
:
=
λ
:
"x"
,
let
:
"p"
:
=
new_prophecy
pr
#()
in
"x"
<-
#
0
;;
let
:
"r"
:
=
rand
#()
in
resolve_prophecy
pr
"p"
"r"
.
Definition
val_to_bool
v
:
=
match
v
with
|
LitBool
b
=>
Some
b
|
_
=>
None
end
.
Lemma
lateChoice_proph_spec
(
x
:
loc
)
:
<<<
x
↦
-
>>>
...
...
@@ -128,24 +129,11 @@ Section prophecy.
iMod
"AU"
as
"[Hl [_ Hclose]]"
.
iDestruct
"Hl"
as
(
v'
)
"Hl"
.
wp_store
.
destruct
(
val_to_bool
v
)
eqn
:
Heq
.
-
iMod
(
"Hclose"
$!
b
with
"[Hl]"
)
as
"HΦ"
;
first
by
eauto
.
iModIntro
.
wp_seq
.
wp_apply
rand_spec
;
try
done
.
iIntros
(
b'
)
"_"
.
wp_let
.
iDestruct
(
resolve_prophecy_spec
with
"Hp"
)
as
"Hs"
.
iAssert
(
▷
(
⌜
#
v
=
#
b'
⌝
-
∗
Φ
#
b'
))%
I
with
"[HΦ]"
as
"Hb"
.
{
iNext
.
iIntros
"Heq"
.
destruct
v
;
inversion
Heq
;
subst
.
iDestruct
"Heq"
as
%->.
done
.
}
iSpecialize
(
"Hs"
with
"Hb"
).
done
.
-
iMod
(
"Hclose"
$!
true
with
"[Hl]"
)
as
"HΦ"
;
first
by
eauto
.
iModIntro
.
wp_seq
.
wp_apply
rand_spec
;
try
done
.
iIntros
(
b'
)
"_"
.
wp_let
.
iDestruct
(
resolve_prophecy_spec
with
"Hp"
)
as
"Hs"
.
iAssert
(
▷
(
⌜
#
v
=
#
b'
⌝
-
∗
Φ
#
b'
))%
I
with
"[HΦ]"
as
"Hb"
.
{
iNext
.
iIntros
"Heq"
.
iDestruct
"Heq"
as
%[=
Heq'
].
destruct
v
;
inversion
Heq
;
inversion
Heq'
.
}
iSpecialize
(
"Hs"
with
"Hb"
).
done
.
iMod
(
"Hclose"
$!
(
val_to_bool
v
)
with
"[Hl]"
)
as
"HΦ"
;
first
by
eauto
.
iModIntro
.
wp_seq
.
wp_apply
rand_spec
;
try
done
.
iIntros
(
b'
)
"_"
.
wp_let
.
iApply
(
resolve_prophecy_spec
with
"Hp"
).
iNext
.
iIntros
(->).
done
.
Qed
.
End
prophecy
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment