Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Simon Spies
Iris
Commits
4a36be37
Commit
4a36be37
authored
Jan 05, 2017
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
apply feedback; fix compilation with coq 8.5
parent
af7b6da1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
18 additions
and
15 deletions
+18
-15
theories/algebra/ofe.v
theories/algebra/ofe.v
+18
-15
No files found.
theories/algebra/ofe.v
View file @
4a36be37
...
...
@@ -956,22 +956,25 @@ Proof.
Qed
.
(** Sigma *)
Class
LimitPreserving
{
A
:
ofeT
}
`
{!
Cofe
A
}
(
P
:
A
→
Prop
)
:
Prop
:
=
limit_preserving
:
∀
c
:
chain
A
,
(
∀
n
,
P
(
c
n
))
→
P
(
compl
c
).
Section
sigma
.
Context
{
A
:
ofeT
}
{
f
:
A
→
Prop
}.
Context
{
A
:
ofeT
}
{
P
:
A
→
Prop
}.
(* TODO: Find a better place for this Equiv instance. It also
should not depend on A being an OFE. *)
Instance
sig_equiv
:
Equiv
(
sig
f
)
:
=
Instance
sig_equiv
:
Equiv
(
sig
P
)
:
=
λ
x1
x2
,
(
proj1_sig
x1
)
≡
(
proj1_sig
x2
).
Instance
sig_dist
:
Dist
(
sig
f
)
:
=
Instance
sig_dist
:
Dist
(
sig
P
)
:
=
λ
n
x1
x2
,
(
proj1_sig
x1
)
≡
{
n
}
≡
(
proj1_sig
x2
).
Global
Lemma
exist_ne
:
Lemma
exist_ne
:
∀
n
x1
x2
,
x1
≡
{
n
}
≡
x2
→
∀
(
H1
:
f
x1
)
(
H2
:
f
x2
),
(
exist
f
x1
H1
)
≡
{
n
}
≡
(
exist
f
x2
H2
).
∀
(
H1
:
P
x1
)
(
H2
:
P
x2
),
(
exist
P
x1
H1
)
≡
{
n
}
≡
(
exist
P
x2
H2
).
Proof
.
intros
n
??
Hx
??.
exact
Hx
.
Qed
.
Global
Instance
proj1_sig_ne
:
Proper
(
dist
n
==>
dist
n
)
(@
proj1_sig
_
f
).
Global
Instance
proj1_sig_ne
:
Proper
(
dist
n
==>
dist
n
)
(@
proj1_sig
_
P
).
Proof
.
intros
n
[]
[]
?.
done
.
Qed
.
Definition
sig_ofe_mixin
:
OfeMixin
(
sig
f
).
Definition
sig_ofe_mixin
:
OfeMixin
(
sig
P
).
Proof
.
split
.
-
intros
x
y
.
unfold
dist
,
sig_dist
,
equiv
,
sig_equiv
.
...
...
@@ -979,24 +982,24 @@ Section sigma.
-
unfold
dist
,
sig_dist
.
intros
n
.
split
;
[
intros
[]
|
intros
[]
[]
|
intros
[]
[]
[]]
;
simpl
;
try
done
.
intros
.
by
etrans
.
-
intros
n
[]
[].
unfold
dist
,
sig_dist
.
apply
dist_S
.
-
intros
n
[
??
]
[
??
].
unfold
dist
,
sig_dist
.
simpl
.
apply
dist_S
.
Qed
.
Canonical
Structure
sigC
:
ofeT
:
=
OfeT
(
sig
f
)
sig_ofe_mixin
.
Canonical
Structure
sigC
:
ofeT
:
=
OfeT
(
sig
P
)
sig_ofe_mixin
.
Global
Class
LimitPreserving
`
{
Cofe
A
}
:
Prop
:
=
limit_preserving
:
∀
c
:
chain
A
,
(
∀
n
,
f
(
c
n
))
→
f
(
compl
c
).
Program
Definition
sig_compl
`
{
LimitPreserving
}
:
Compl
sigC
:
=
λ
c
,
exist
f
(
compl
(
chain_map
proj1_sig
c
))
_
.
(* FIXME: WTF, it seems that within these braces {...} the ofe argument of LimitPreserving
suddenyl becomes explicit...? *)
Program
Definition
sig_compl
`
{
LimitPreserving
_
P
}
:
Compl
sigC
:
=
λ
c
,
exist
P
(
compl
(
chain_map
proj1_sig
c
))
_
.
Next
Obligation
.
intros
?
Hlim
c
.
apply
Hlim
.
move
=>
n
/=.
destruct
(
c
n
).
done
.
Qed
.
Program
Definition
sig_cofe
`
{
LimitPreserving
}
:
Cofe
sigC
:
=
Program
Definition
sig_cofe
`
{
LimitPreserving
_
P
}
:
Cofe
sigC
:
=
{|
compl
:
=
sig_compl
|}.
Next
Obligation
.
intros
?
Hlim
n
c
.
apply
(
conv_compl
n
(
chain_map
proj1_sig
c
)).
Qed
.
Global
Instance
sig_timeless
(
x
:
sig
f
)
:
Global
Instance
sig_timeless
(
x
:
sig
P
)
:
Timeless
(
proj1_sig
x
)
→
Timeless
x
.
Proof
.
intros
?
y
.
destruct
x
,
y
.
unfold
dist
,
sig_dist
,
equiv
,
sig_equiv
.
apply
(
timeless
_
).
Qed
.
Global
Instance
sig_discrete_cofe
:
Discrete
A
→
Discrete
sigC
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment