Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Simon Spies
Iris
Commits
0a35ba52
Commit
0a35ba52
authored
Jan 04, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix more _L lemmas.
parent
cbeb20a2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2 additions
and
2 deletions
+2
-2
theories/prelude/collections.v
theories/prelude/collections.v
+2
-2
No files found.
theories/prelude/collections.v
View file @
0a35ba52
...
...
@@ -643,9 +643,9 @@ Section collection.
Proof
.
unfold_leibniz
;
apply
union_intersection_l
.
Qed
.
Lemma
union_intersection_r_L
X
Y
Z
:
(
X
∩
Y
)
∪
Z
=
(
X
∪
Z
)
∩
(
Y
∪
Z
).
Proof
.
unfold_leibniz
;
apply
union_intersection_r
.
Qed
.
Lemma
intersection_union_l_L
X
Y
Z
:
X
∩
(
Y
∪
Z
)
≡
(
X
∩
Y
)
∪
(
X
∩
Z
).
Lemma
intersection_union_l_L
X
Y
Z
:
X
∩
(
Y
∪
Z
)
=
(
X
∩
Y
)
∪
(
X
∩
Z
).
Proof
.
unfold_leibniz
;
apply
intersection_union_l
.
Qed
.
Lemma
intersection_union_r_L
X
Y
Z
:
(
X
∪
Y
)
∩
Z
≡
(
X
∩
Z
)
∪
(
Y
∩
Z
).
Lemma
intersection_union_r_L
X
Y
Z
:
(
X
∪
Y
)
∩
Z
=
(
X
∩
Z
)
∪
(
Y
∩
Z
).
Proof
.
unfold_leibniz
;
apply
intersection_union_r
.
Qed
.
(** Difference *)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment