environments.v 30 KB
Newer Older
1
From iris.proofmode Require Import base.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
From iris.algebra Require Export base.
3
From iris.bi Require Export bi.
4
From iris.bi Require Import tactics.
5
Set Default Proof Using "Type".
6
Import bi.
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9

Inductive env (A : Type) : Type :=
  | Enil : env A
10
  | Esnoc : env A  ident  A  env A.
Robbert Krebbers's avatar
Robbert Krebbers committed
11
Arguments Enil {_}.
12
Arguments Esnoc {_} _ _ _.
13 14
Instance: Params (@Enil) 1.
Instance: Params (@Esnoc) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
15

16
Fixpoint env_lookup {A} (i : ident) (Γ : env A) : option A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18
  match Γ with
  | Enil => None
19
  | Esnoc Γ j x => if ident_beq i j then Some x else env_lookup i Γ
Robbert Krebbers's avatar
Robbert Krebbers committed
20
  end.
21 22

Module env_notations.
23
  Notation "y ≫= f" := (pm_option_bind f y).
24
  Notation "x ← y ; z" := (y = λ x, z).
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  Notation "' x1 .. xn ← y ; z" := (y = (λ x1, .. (λ xn, z) .. )).
26
  Notation "Γ !! j" := (env_lookup j Γ).
27 28 29

  (* andb will not be simplified by pm_reduce *)
  Notation "b1 && b2" := (if b1 then b2 else false) : bool_scope.
30 31
End env_notations.
Import env_notations.
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39

Inductive env_wf {A} : env A  Prop :=
  | Enil_wf : env_wf Enil
  | Esnoc_wf Γ i x : Γ !! i = None  env_wf Γ  env_wf (Esnoc Γ i x).

Fixpoint env_to_list {A} (E : env A) : list A :=
  match E with Enil => [] | Esnoc Γ _ x => x :: env_to_list Γ end.
Coercion env_to_list : env >-> list.
40
Instance: Params (@env_to_list) 1.
41

42
Fixpoint env_dom {A} (Γ : env A) : list ident :=
43
  match Γ with Enil => [] | Esnoc Γ i _ => i :: env_dom Γ end.
44

Robbert Krebbers's avatar
Robbert Krebbers committed
45 46 47 48
Fixpoint env_app {A} (Γapp : env A) (Γ : env A) : option (env A) :=
  match Γapp with
  | Enil => Some Γ
  | Esnoc Γapp i x =>
49
     Γ'  env_app Γapp Γ;
Robbert Krebbers's avatar
Robbert Krebbers committed
50 51
     match Γ' !! i with None => Some (Esnoc Γ' i x) | Some _ => None end
  end.
52

53
Fixpoint env_replace {A} (i: ident) (Γi: env A) (Γ: env A) : option (env A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
54 55 56
  match Γ with
  | Enil => None
  | Esnoc Γ j x =>
57
     if ident_beq i j then env_app Γi Γ else
Robbert Krebbers's avatar
Robbert Krebbers committed
58 59 60 61 62
     match Γi !! j with
     | None => Γ'  env_replace i Γi Γ; Some (Esnoc Γ' j x)
     | Some _ => None
     end
  end.
63

64
Fixpoint env_delete {A} (i : ident) (Γ : env A) : env A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
65 66
  match Γ with
  | Enil => Enil
67
  | Esnoc Γ j x => if ident_beq i j then Γ else Esnoc (env_delete i Γ) j x
Robbert Krebbers's avatar
Robbert Krebbers committed
68
  end.
69

70
Fixpoint env_lookup_delete {A} (i : ident) (Γ : env A) : option (A * env A) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
71 72 73
  match Γ with
  | Enil => None
  | Esnoc Γ j x =>
74
     if ident_beq i j then Some (x,Γ)
Robbert Krebbers's avatar
Robbert Krebbers committed
75
     else ''(y,Γ')  env_lookup_delete i Γ; Some (y, Esnoc Γ' j x)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
77

Robbert Krebbers's avatar
Robbert Krebbers committed
78 79 80 81 82
Inductive env_Forall2 {A B} (P : A  B  Prop) : env A  env B  Prop :=
  | env_Forall2_nil : env_Forall2 P Enil Enil
  | env_Forall2_snoc Γ1 Γ2 i x y :
     env_Forall2 P Γ1 Γ2  P x y  env_Forall2 P (Esnoc Γ1 i x) (Esnoc Γ2 i y).

83 84 85 86 87 88 89
Inductive env_subenv {A} : relation (env A) :=
  | env_subenv_nil : env_subenv Enil Enil
  | env_subenv_snoc Γ1 Γ2 i x :
     env_subenv Γ1 Γ2  env_subenv (Esnoc Γ1 i x) (Esnoc Γ2 i x)
  | env_subenv_skip Γ1 Γ2 i y :
     env_subenv Γ1 Γ2  env_subenv Γ1 (Esnoc Γ2 i y).

Robbert Krebbers's avatar
Robbert Krebbers committed
90 91 92
Section env.
Context {A : Type}.
Implicit Types Γ : env A.
93
Implicit Types i : ident.
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96
Implicit Types x : A.
Hint Resolve Esnoc_wf Enil_wf.

97 98 99
Ltac simplify :=
  repeat match goal with
  | _ => progress simplify_eq/=
100 101
  | H : context [ident_beq ?s1 ?s2] |- _ => destruct (ident_beq_reflect s1 s2)
  | |- context [ident_beq ?s1 ?s2] => destruct (ident_beq_reflect s1 s2)
102 103
  | H : context [pm_option_bind _ ?x] |- _ => destruct x eqn:?
  | |- context [pm_option_bind _ ?x] => destruct x eqn:?
104 105
  | _ => case_match
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
106 107 108 109 110 111

Lemma env_lookup_perm Γ i x : Γ !! i = Some x  Γ  x :: env_delete i Γ.
Proof.
  induction Γ; intros; simplify; rewrite 1?Permutation_swap; f_equiv; eauto.
Qed.

112 113 114 115 116 117
Lemma env_lookup_snoc Γ i P : env_lookup i (Esnoc Γ i P) = Some P.
Proof. induction Γ; simplify; auto. Qed.
Lemma env_lookup_snoc_ne Γ i j P :
  i  j  env_lookup i (Esnoc Γ j P) = env_lookup i Γ.
Proof. induction Γ=> ?; simplify; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
Lemma env_app_perm Γ Γapp Γ' :
  env_app Γapp Γ = Some Γ'  env_to_list Γ'  Γapp ++ Γ.
Proof. revert Γ'; induction Γapp; intros; simplify; f_equal; auto. Qed.
Lemma env_app_fresh Γ Γapp Γ' i :
  env_app Γapp Γ = Some Γ'  Γapp !! i = None  Γ !! i = None  Γ' !! i = None.
Proof. revert Γ'. induction Γapp; intros; simplify; eauto. Qed.
Lemma env_app_fresh_1 Γ Γapp Γ' i x :
  env_app Γapp Γ = Some Γ'  Γ' !! i = None  Γ !! i = None.
Proof. revert Γ'. induction Γapp; intros; simplify; eauto. Qed.
Lemma env_app_disjoint Γ Γapp Γ' i :
  env_app Γapp Γ = Some Γ'  Γapp !! i = None  Γ !! i = None.
Proof.
  revert Γ'.
  induction Γapp; intros; simplify; naive_solver eauto using env_app_fresh_1.
Qed.
Lemma env_app_wf Γ Γapp Γ' : env_app Γapp Γ = Some Γ'  env_wf Γ  env_wf Γ'.
Proof. revert Γ'. induction Γapp; intros; simplify; eauto. Qed.

Lemma env_replace_fresh Γ Γj Γ' i j :
  env_replace j Γj Γ = Some Γ' 
  Γj !! i = None  env_delete j Γ !! i = None  Γ' !! i = None.
Proof. revert Γ'. induction Γ; intros; simplify; eauto using env_app_fresh. Qed.
Lemma env_replace_wf Γ Γi Γ' i :
  env_replace i Γi Γ = Some Γ'  env_wf (env_delete i Γ)  env_wf Γ'.
Proof.
  revert Γ'. induction Γ; intros ??; simplify; [|inversion_clear 1];
    eauto using env_app_wf, env_replace_fresh.
Qed.
Lemma env_replace_lookup Γ Γi Γ' i :
  env_replace i Γi Γ = Some Γ'  is_Some (Γ !! i).
Proof. revert Γ'. induction Γ; intros; simplify; eauto. Qed.
Lemma env_replace_perm Γ Γi Γ' i :
  env_replace i Γi Γ = Some Γ'  Γ'  Γi ++ env_delete i Γ.
Proof.
152 153
  revert Γ'. induction Γ as [|Γ IH j y]=>Γ' ?; simplify; auto using env_app_perm.
  rewrite -Permutation_middle -IH //.
Robbert Krebbers's avatar
Robbert Krebbers committed
154 155 156
Qed.

Lemma env_lookup_delete_correct Γ i :
Robbert Krebbers's avatar
Robbert Krebbers committed
157
  env_lookup_delete i Γ = (x  Γ !! i; Some (x,env_delete i Γ)).
Robbert Krebbers's avatar
Robbert Krebbers committed
158 159 160 161
Proof. induction Γ; intros; simplify; eauto. Qed.
Lemma env_lookup_delete_Some Γ Γ' i x :
  env_lookup_delete i Γ = Some (x,Γ')  Γ !! i = Some x  Γ' = env_delete i Γ.
Proof. rewrite env_lookup_delete_correct; simplify; naive_solver. Qed.
162 163

Lemma env_lookup_env_delete Γ j : env_wf Γ  env_delete j Γ !! j = None.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
Proof. induction 1; intros; simplify; eauto. Qed.
165 166
Lemma env_lookup_env_delete_ne Γ i j : i  j  env_delete j Γ !! i = Γ !! i.
Proof. induction Γ; intros; simplify; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
167 168
Lemma env_delete_fresh Γ i j : Γ !! i = None  env_delete j Γ !! i = None.
Proof. induction Γ; intros; simplify; eauto. Qed.
169

Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172
Lemma env_delete_wf Γ j : env_wf Γ  env_wf (env_delete j Γ).
Proof. induction 1; simplify; eauto using env_delete_fresh. Qed.

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
Global Instance env_Forall2_refl (P : relation A) :
  Reflexive P  Reflexive (env_Forall2 P).
Proof. intros ? Γ. induction Γ; constructor; auto. Qed.
Global Instance env_Forall2_sym (P : relation A) :
  Symmetric P  Symmetric (env_Forall2 P).
Proof. induction 2; constructor; auto. Qed.
Global Instance env_Forall2_trans (P : relation A) :
  Transitive P  Transitive (env_Forall2 P).
Proof.
  intros ? Γ1 Γ2 Γ3 HΓ; revert Γ3.
  induction HΓ; inversion_clear 1; constructor; eauto.
Qed.
Global Instance env_Forall2_antisymm (P Q : relation A) :
  AntiSymm P Q  AntiSymm (env_Forall2 P) (env_Forall2 Q).
Proof. induction 2; inversion_clear 1; constructor; auto. Qed.
Lemma env_Forall2_impl {B} (P Q : A  B  Prop) Γ Σ :
  env_Forall2 P Γ Σ  ( x y, P x y  Q x y)  env_Forall2 Q Γ Σ.
Proof. induction 1; constructor; eauto. Qed.

Global Instance Esnoc_proper (P : relation A) :
  Proper (env_Forall2 P ==> (=) ==> P ==> env_Forall2 P) Esnoc.
Proof. intros Γ1 Γ2 HΓ i ? <-; by constructor. Qed.
Global Instance env_to_list_proper (P : relation A) :
  Proper (env_Forall2 P ==> Forall2 P) env_to_list.
Proof. induction 1; constructor; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
199 200 201 202 203 204
Lemma env_Forall2_fresh {B} (P : A  B  Prop) Γ Σ i :
  env_Forall2 P Γ Σ  Γ !! i = None  Σ !! i = None.
Proof. by induction 1; simplify. Qed.
Lemma env_Forall2_wf {B} (P : A  B  Prop) Γ Σ :
  env_Forall2 P Γ Σ  env_wf Γ  env_wf Σ.
Proof. induction 1; inversion_clear 1; eauto using env_Forall2_fresh. Qed.
205 206 207 208 209 210 211 212

Lemma env_subenv_fresh Γ Σ i : env_subenv Γ Σ  Σ !! i = None  Γ !! i = None.
Proof. by induction 1; simplify. Qed.
Lemma env_subenv_wf Γ Σ : env_subenv Γ Σ  env_wf Σ  env_wf Γ.
Proof. induction 1; inversion_clear 1; eauto using env_subenv_fresh. Qed.
Global Instance env_to_list_subenv_proper :
  Proper (env_subenv ==> sublist) (@env_to_list A).
Proof. induction 1; simpl; constructor; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
213
End env.
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

Record envs (PROP : bi) :=
  Envs { env_intuitionistic : env PROP; env_spatial : env PROP; env_counter : positive }.
Add Printing Constructor envs.
Arguments Envs {_} _ _ _.
Arguments env_intuitionistic {_} _.
Arguments env_spatial {_} _.
Arguments env_counter {_} _.

Record envs_wf {PROP} (Δ : envs PROP) := {
  env_intuitionistic_valid : env_wf (env_intuitionistic Δ);
  env_spatial_valid : env_wf (env_spatial Δ);
  envs_disjoint i : env_intuitionistic Δ !! i = None  env_spatial Δ !! i = None
}.

Definition of_envs {PROP} (Δ : envs PROP) : PROP :=
  (envs_wf Δ⌝   [] env_intuitionistic Δ  [] env_spatial Δ)%I.
Instance: Params (@of_envs) 1.
Arguments of_envs : simpl never.

(* We seal [envs_entails], so that it does not get unfolded by the
   proofmode's own tactics, such as [iIntros (?)]. *)
Definition envs_entails_aux : seal (λ PROP (Δ : envs PROP) (Q : PROP), (of_envs Δ  Q)).
Proof. by eexists. Qed.
Definition envs_entails := envs_entails_aux.(unseal).
Definition envs_entails_eq : envs_entails = _ := envs_entails_aux.(seal_eq).
Arguments envs_entails {PROP} Δ Q%I : rename.
Instance: Params (@envs_entails) 1.

Record envs_Forall2 {PROP : bi} (R : relation PROP) (Δ1 Δ2 : envs PROP) := {
  env_intuitionistic_Forall2 : env_Forall2 R (env_intuitionistic Δ1) (env_intuitionistic Δ2);
  env_spatial_Forall2 : env_Forall2 R (env_spatial Δ1) (env_spatial Δ2)
}.

Definition envs_dom {PROP} (Δ : envs PROP) : list ident :=
  env_dom (env_intuitionistic Δ) ++ env_dom (env_spatial Δ).

Definition envs_lookup {PROP} (i : ident) (Δ : envs PROP) : option (bool * PROP) :=
  let (Γp,Γs,n) := Δ in
  match env_lookup i Γp with
  | Some P => Some (true, P)
  | None => P  env_lookup i Γs; Some (false, P)
  end.

Definition envs_delete {PROP} (remove_persistent : bool)
    (i : ident) (p : bool) (Δ : envs PROP) : envs PROP :=
  let (Γp,Γs,n) := Δ in
  match p with
  | true => Envs (if remove_persistent then env_delete i Γp else Γp) Γs n
  | false => Envs Γp (env_delete i Γs) n
  end.

Definition envs_lookup_delete {PROP} (remove_persistent : bool)
    (i : ident) (Δ : envs PROP) : option (bool * PROP * envs PROP) :=
  let (Γp,Γs,n) := Δ in
  match env_lookup_delete i Γp with
  | Some (P,Γp') => Some (true, P, Envs (if remove_persistent then Γp' else Γp) Γs n)
  | None => ''(P,Γs')  env_lookup_delete i Γs; Some (false, P, Envs Γp Γs' n)
  end.

Fixpoint envs_lookup_delete_list {PROP} (remove_persistent : bool)
    (js : list ident) (Δ : envs PROP) : option (bool * list PROP * envs PROP) :=
  match js with
  | [] => Some (true, [], Δ)
  | j :: js =>
     ''(p,P,Δ')  envs_lookup_delete remove_persistent j Δ;
280 281
     ''(q,Ps,Δ'')  envs_lookup_delete_list remove_persistent js Δ';
     Some ((p:bool) && q, P :: Ps, Δ'')
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
  end.

Definition envs_snoc {PROP} (Δ : envs PROP)
    (p : bool) (j : ident) (P : PROP) : envs PROP :=
  let (Γp,Γs,n) := Δ in
  if p then Envs (Esnoc Γp j P) Γs n else Envs Γp (Esnoc Γs j P) n.

Definition envs_app {PROP : bi} (p : bool)
    (Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
  let (Γp,Γs,n) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_app Γ Γp; Some (Envs Γp' Γs n)
  | false => _  env_app Γ Γp; Γs'  env_app Γ Γs; Some (Envs Γp Γs' n)
  end.

Definition envs_simple_replace {PROP : bi} (i : ident) (p : bool)
    (Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
  let (Γp,Γs,n) := Δ in
  match p with
  | true => _  env_app Γ Γs; Γp'  env_replace i Γ Γp; Some (Envs Γp' Γs n)
  | false => _  env_app Γ Γp; Γs'  env_replace i Γ Γs; Some (Envs Γp Γs' n)
  end.

Definition envs_replace {PROP : bi} (i : ident) (p q : bool)
    (Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
  if beq p q then envs_simple_replace i p Γ Δ
  else envs_app q Γ (envs_delete true i p Δ).

Definition env_spatial_is_nil {PROP} (Δ : envs PROP) : bool :=
  if env_spatial Δ is Enil then true else false.

Definition envs_clear_spatial {PROP} (Δ : envs PROP) : envs PROP :=
  Envs (env_intuitionistic Δ) Enil (env_counter Δ).

Definition envs_clear_persistent {PROP} (Δ : envs PROP) : envs PROP :=
  Envs Enil (env_spatial Δ) (env_counter Δ).

Definition envs_incr_counter {PROP} (Δ : envs PROP) : envs PROP :=
320
  Envs (env_intuitionistic Δ) (env_spatial Δ) (Pos_succ (env_counter Δ)).
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

Fixpoint envs_split_go {PROP}
    (js : list ident) (Δ1 Δ2 : envs PROP) : option (envs PROP * envs PROP) :=
  match js with
  | [] => Some (Δ1, Δ2)
  | j :: js =>
     ''(p,P,Δ1')  envs_lookup_delete true j Δ1;
     if p : bool then envs_split_go js Δ1 Δ2 else
     envs_split_go js Δ1' (envs_snoc Δ2 false j P)
  end.
(* if [d = Right] then [result = (remaining hyps, hyps named js)] and
   if [d = Left] then [result = (hyps named js, remaining hyps)] *)
Definition envs_split {PROP} (d : direction)
    (js : list ident) (Δ : envs PROP) : option (envs PROP * envs PROP) :=
  ''(Δ1,Δ2)  envs_split_go js Δ (envs_clear_spatial Δ);
  if d is Right then Some (Δ1,Δ2) else Some (Δ2,Δ1).

338
Definition env_to_prop {PROP : bi} (Γ : env PROP) : PROP :=
339 340 341 342
  let fix aux Γ acc :=
    match Γ with Enil => acc | Esnoc Γ _ P => aux Γ (P  acc)%I end
  in
  match Γ with Enil => emp%I | Esnoc Γ _ P => aux Γ P end.
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

Section envs.
Context {PROP : bi}.
Implicit Types Γ : env PROP.
Implicit Types Δ : envs PROP.
Implicit Types P Q : PROP.

Lemma of_envs_eq Δ :
  of_envs Δ = (envs_wf Δ⌝   [] env_intuitionistic Δ  [] env_spatial Δ)%I.
Proof. done. Qed.
(** An environment is a ∗ of something intuitionistic and the spatial environment.
TODO: Can we define it as such? *)
Lemma of_envs_eq' Δ :
  of_envs Δ  (envs_wf Δ⌝   [] env_intuitionistic Δ)  [] env_spatial Δ.
Proof. rewrite of_envs_eq persistent_and_sep_assoc //. Qed.

Lemma envs_delete_persistent Δ i : envs_delete false i true Δ = Δ.
Proof. by destruct Δ. Qed.
Lemma envs_delete_spatial Δ i :
  envs_delete false i false Δ = envs_delete true i false Δ.
Proof. by destruct Δ. Qed.

Lemma envs_lookup_delete_Some Δ Δ' rp i p P :
  envs_lookup_delete rp i Δ = Some (p,P,Δ')
   envs_lookup i Δ = Some (p,P)  Δ' = envs_delete rp i p Δ.
Proof.
  rewrite /envs_lookup /envs_delete /envs_lookup_delete.
  destruct Δ as [Γp Γs]; rewrite /= !env_lookup_delete_correct.
  destruct (Γp !! i), (Γs !! i); naive_solver.
Qed.

Lemma envs_lookup_sound' Δ rp i p P :
  envs_lookup i Δ = Some (p,P) 
  of_envs Δ  ?p P  of_envs (envs_delete rp i p Δ).
Proof.
  rewrite /envs_lookup /envs_delete /of_envs=>?. apply pure_elim_l=> Hwf.
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
  - rewrite pure_True ?left_id; last (destruct Hwf, rp; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh).
    destruct rp.
    + rewrite (env_lookup_perm Γp) //= intuitionistically_and.
      by rewrite and_sep_intuitionistically -assoc.
    + rewrite {1}intuitionistically_sep_dup {1}(env_lookup_perm Γp) //=.
      by rewrite intuitionistically_and and_elim_l -assoc.
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
    rewrite pure_True ?left_id; last (destruct Hwf; constructor;
      naive_solver eauto using env_delete_wf, env_delete_fresh).
    rewrite (env_lookup_perm Γs) //=. by rewrite !assoc -(comm _ P).
Qed.
Lemma envs_lookup_sound Δ i p P :
  envs_lookup i Δ = Some (p,P) 
  of_envs Δ  ?p P  of_envs (envs_delete true i p Δ).
Proof. apply envs_lookup_sound'. Qed.
Lemma envs_lookup_persistent_sound Δ i P :
  envs_lookup i Δ = Some (true,P)  of_envs Δ   P  of_envs Δ.
Proof. intros ?%(envs_lookup_sound' _ false). by destruct Δ. Qed.
Lemma envs_lookup_sound_2 Δ i p P :
  envs_wf Δ  envs_lookup i Δ = Some (p,P) 
  ?p P  of_envs (envs_delete true i p Δ)  of_envs Δ.
Proof.
  rewrite /envs_lookup /of_envs=>Hwf ?. rewrite [envs_wf Δ⌝%I]pure_True // left_id.
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
  - rewrite (env_lookup_perm Γp) //= intuitionistically_and
      and_sep_intuitionistically and_elim_r.
    cancel [ P]%I. solve_sep_entails.
  - destruct (Γs !! i) eqn:?; simplify_eq/=.
    rewrite (env_lookup_perm Γs) //= and_elim_r.
    cancel [P]. solve_sep_entails.
Qed.

Lemma envs_lookup_split Δ i p P :
  envs_lookup i Δ = Some (p,P)  of_envs Δ  ?p P  (?p P - of_envs Δ).
Proof.
  intros. apply pure_elim with (envs_wf Δ).
  { rewrite of_envs_eq. apply and_elim_l. }
  intros. rewrite {1}envs_lookup_sound//.
  apply sep_mono_r. apply wand_intro_l, envs_lookup_sound_2; done.
Qed.

Lemma envs_lookup_delete_sound Δ Δ' rp i p P :
  envs_lookup_delete rp i Δ = Some (p,P,Δ')  of_envs Δ  ?p P  of_envs Δ'.
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound'. Qed.

Lemma envs_lookup_delete_list_sound Δ Δ' rp js p Ps :
  envs_lookup_delete_list rp js Δ = Some (p,Ps,Δ') 
  of_envs Δ  ?p [] Ps  of_envs Δ'.
Proof.
  revert Δ Δ' p Ps. induction js as [|j js IH]=> Δ Δ'' p Ps ?; simplify_eq/=.
  { by rewrite intuitionistically_emp left_id. }
  destruct (envs_lookup_delete rp j Δ) as [[[q1 P] Δ']|] eqn:Hj; simplify_eq/=.
  apply envs_lookup_delete_Some in Hj as [Hj ->].
  destruct (envs_lookup_delete_list _ js _) as [[[q2 Ps'] ?]|] eqn:?; simplify_eq/=.
  rewrite -intuitionistically_if_sep_2 -assoc.
  rewrite envs_lookup_sound' //; rewrite IH //.
  repeat apply sep_mono=>//; apply intuitionistically_if_flag_mono; by destruct q1.
Qed.

Lemma envs_lookup_delete_list_cons Δ Δ' Δ'' rp j js p1 p2 P Ps :
  envs_lookup_delete rp j Δ = Some (p1, P, Δ') 
  envs_lookup_delete_list rp js Δ' = Some (p2, Ps, Δ'') 
  envs_lookup_delete_list rp (j :: js) Δ = Some (p1 && p2, (P :: Ps), Δ'').
Proof. rewrite //= => -> //= -> //=. Qed.

Lemma envs_lookup_delete_list_nil Δ rp :
  envs_lookup_delete_list rp [] Δ = Some (true, [], Δ).
Proof. done. Qed.

Lemma envs_lookup_snoc Δ i p P :
  envs_lookup i Δ = None  envs_lookup i (envs_snoc Δ p i P) = Some (p, P).
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p, (Γp !! i); simplify_eq; by rewrite env_lookup_snoc.
Qed.
Lemma envs_lookup_snoc_ne Δ i j p P :
  i  j  envs_lookup i (envs_snoc Δ p j P) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_snoc=> ?.
  destruct Δ as [Γp Γs], p; simplify_eq; by rewrite env_lookup_snoc_ne.
Qed.

Lemma envs_snoc_sound Δ p i P :
  envs_lookup i Δ = None  of_envs Δ  ?p P - of_envs (envs_snoc Δ p i P).
Proof.
  rewrite /envs_lookup /envs_snoc /of_envs=> ?; apply pure_elim_l=> Hwf.
  destruct Δ as [Γp Γs], (Γp !! i) eqn:?, (Γs !! i) eqn:?; simplify_eq/=.
  apply wand_intro_l; destruct p; simpl.
  - apply and_intro; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
      intros j; destruct (ident_beq_reflect j i); naive_solver.
    + by rewrite intuitionistically_and and_sep_intuitionistically assoc.
  - apply and_intro; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
      intros j; destruct (ident_beq_reflect j i); naive_solver.
    + solve_sep_entails.
Qed.

Lemma envs_app_sound Δ Δ' p Γ :
  envs_app p Γ Δ = Some Δ' 
  of_envs Δ  (if p then  [] Γ else [] Γ) - of_envs Δ'.
Proof.
  rewrite /of_envs /envs_app=> ?; apply pure_elim_l=> Hwf.
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_app Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
    apply wand_intro_l, and_intro; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
    + rewrite (env_app_perm _ _ Γp') //.
      rewrite big_opL_app intuitionistically_and and_sep_intuitionistically.
      solve_sep_entails.
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_app Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
    apply wand_intro_l, and_intro; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using env_app_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      naive_solver eauto using env_app_fresh.
    + rewrite (env_app_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Qed.

Lemma envs_app_singleton_sound Δ Δ' p j Q :
  envs_app p (Esnoc Enil j Q) Δ = Some Δ'  of_envs Δ  ?p Q - of_envs Δ'.
Proof. move=> /envs_app_sound. destruct p; by rewrite /= right_id. Qed.

Lemma envs_simple_replace_sound' Δ Δ' i p Γ :
  envs_simple_replace i p Γ Δ = Some Δ' 
  of_envs (envs_delete true i p Δ)  (if p then  [] Γ else [] Γ) - of_envs Δ'.
Proof.
  rewrite /envs_simple_replace /envs_delete /of_envs=> ?.
  apply pure_elim_l=> Hwf. destruct Δ as [Γp Γs], p; simplify_eq/=.
  - destruct (env_app Γ Γs) eqn:Happ,
      (env_replace i Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
    apply wand_intro_l, and_intro; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
    + rewrite (env_replace_perm _ _ Γp') //.
      rewrite big_opL_app intuitionistically_and and_sep_intuitionistically.
      solve_sep_entails.
  - destruct (env_app Γ Γp) eqn:Happ,
      (env_replace i Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
    apply wand_intro_l, and_intro; [apply pure_intro|].
    + destruct Hwf; constructor; simpl; eauto using env_replace_wf.
      intros j. apply (env_app_disjoint _ _ _ j) in Happ.
      destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
    + rewrite (env_replace_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Qed.

Lemma envs_simple_replace_singleton_sound' Δ Δ' i p j Q :
  envs_simple_replace i p (Esnoc Enil j Q) Δ = Some Δ' 
  of_envs (envs_delete true i p Δ)  ?p Q - of_envs Δ'.
Proof. move=> /envs_simple_replace_sound'. destruct p; by rewrite /= right_id. Qed.

Lemma envs_simple_replace_sound Δ Δ' i p P Γ :
  envs_lookup i Δ = Some (p,P)  envs_simple_replace i p Γ Δ = Some Δ' 
  of_envs Δ  ?p P  ((if p then  [] Γ else [] Γ) - of_envs Δ').
Proof. intros. by rewrite envs_lookup_sound// envs_simple_replace_sound'//. Qed.

Lemma envs_simple_replace_maybe_sound Δ Δ' i p P Γ :
  envs_lookup i Δ = Some (p,P)  envs_simple_replace i p Γ Δ = Some Δ' 
  of_envs Δ  ?p P  (((if p then  [] Γ else [] Γ) - of_envs Δ')  (?p P - of_envs Δ)).
Proof.
  intros. apply pure_elim with (envs_wf Δ).
  { rewrite of_envs_eq. apply and_elim_l. }
  intros. rewrite {1}envs_lookup_sound//. apply sep_mono_r, and_intro.
  - rewrite envs_simple_replace_sound'//.
  - apply wand_intro_l, envs_lookup_sound_2; done.
Qed.

Lemma envs_simple_replace_singleton_sound Δ Δ' i p P j Q :
  envs_lookup i Δ = Some (p,P) 
  envs_simple_replace i p (Esnoc Enil j Q) Δ = Some Δ' 
  of_envs Δ  ?p P  (?p Q - of_envs Δ').
Proof.
  intros. by rewrite envs_lookup_sound// envs_simple_replace_singleton_sound'//.
Qed.

Lemma envs_replace_sound' Δ Δ' i p q Γ :
  envs_replace i p q Γ Δ = Some Δ' 
  of_envs (envs_delete true i p Δ)  (if q then  [] Γ else [] Γ) - of_envs Δ'.
Proof.
  rewrite /envs_replace; destruct (beq _ _) eqn:Hpq.
  - apply eqb_prop in Hpq as ->. apply envs_simple_replace_sound'.
  - apply envs_app_sound.
Qed.

Lemma envs_replace_singleton_sound' Δ Δ' i p q j Q :
  envs_replace i p q (Esnoc Enil j Q) Δ = Some Δ' 
  of_envs (envs_delete true i p Δ)  ?q Q - of_envs Δ'.
Proof. move=> /envs_replace_sound'. destruct q; by rewrite /= ?right_id. Qed.

Lemma envs_replace_sound Δ Δ' i p q P Γ :
  envs_lookup i Δ = Some (p,P)  envs_replace i p q Γ Δ = Some Δ' 
  of_envs Δ  ?p P  ((if q then  [] Γ else [] Γ) - of_envs Δ').
Proof. intros. by rewrite envs_lookup_sound// envs_replace_sound'//. Qed.

Lemma envs_replace_singleton_sound Δ Δ' i p q P j Q :
  envs_lookup i Δ = Some (p,P) 
  envs_replace i p q (Esnoc Enil j Q) Δ = Some Δ' 
  of_envs Δ  ?p P  (?q Q - of_envs Δ').
Proof. intros. by rewrite envs_lookup_sound// envs_replace_singleton_sound'//. Qed.

Lemma envs_lookup_envs_clear_spatial Δ j :
  envs_lookup j (envs_clear_spatial Δ)
  = ''(p,P)  envs_lookup j Δ; if p : bool then Some (p,P) else None.
Proof.
  rewrite /envs_lookup /envs_clear_spatial.
  destruct Δ as [Γp Γs]; simpl; destruct (Γp !! j) eqn:?; simplify_eq/=; auto.
  by destruct (Γs !! j).
Qed.

Lemma envs_clear_spatial_sound Δ :
  of_envs Δ  of_envs (envs_clear_spatial Δ)  [] env_spatial Δ.
Proof.
  rewrite /of_envs /envs_clear_spatial /=. apply pure_elim_l=> Hwf.
  rewrite right_id -persistent_and_sep_assoc. apply and_intro; [|done].
  apply pure_intro. destruct Hwf; constructor; simpl; auto using Enil_wf.
Qed.

Lemma env_spatial_is_nil_intuitionistically Δ :
  env_spatial_is_nil Δ = true  of_envs Δ   of_envs Δ.
Proof.
  intros. unfold of_envs; destruct Δ as [? []]; simplify_eq/=.
  rewrite !right_id /bi_intuitionistically {1}affinely_and_r persistently_and.
  by rewrite persistently_affinely_elim persistently_idemp persistently_pure.
Qed.

Lemma envs_lookup_envs_delete Δ i p P :
  envs_wf Δ 
  envs_lookup i Δ = Some (p,P)  envs_lookup i (envs_delete true i p Δ) = None.
Proof.
  rewrite /envs_lookup /envs_delete=> -[?? Hdisj] Hlookup.
  destruct Δ as [Γp Γs], p; simplify_eq/=.
  - rewrite env_lookup_env_delete //. revert Hlookup.
    destruct (Hdisj i) as [->| ->]; [|done]. by destruct (Γs !! _).
  - rewrite env_lookup_env_delete //. by destruct (Γp !! _).
Qed.
Lemma envs_lookup_envs_delete_ne Δ rp i j p :
  i  j  envs_lookup i (envs_delete rp j p Δ) = envs_lookup i Δ.
Proof.
  rewrite /envs_lookup /envs_delete=> ?. destruct Δ as [Γp Γs],p; simplify_eq/=.
  - destruct rp=> //. by rewrite env_lookup_env_delete_ne.
  - destruct (Γp !! i); simplify_eq/=; by rewrite ?env_lookup_env_delete_ne.
Qed.

Lemma envs_split_go_sound js Δ1 Δ2 Δ1' Δ2' :
  ( j P, envs_lookup j Δ1 = Some (false, P)  envs_lookup j Δ2 = None) 
  envs_split_go js Δ1 Δ2 = Some (Δ1',Δ2') 
  of_envs Δ1  of_envs Δ2  of_envs Δ1'  of_envs Δ2'.
Proof.
  revert Δ1 Δ2.
  induction js as [|j js IH]=> Δ1 Δ2 Hlookup HΔ; simplify_eq/=; [done|].
  apply pure_elim with (envs_wf Δ1)=> [|Hwf].
  { by rewrite /of_envs !and_elim_l sep_elim_l. }
  destruct (envs_lookup_delete _ j Δ1)
    as [[[[] P] Δ1'']|] eqn:Hdel; simplify_eq/=; auto.
  apply envs_lookup_delete_Some in Hdel as [??]; subst.
  rewrite envs_lookup_sound //; rewrite /= (comm _ P) -assoc.
  rewrite -(IH _ _ _ HΔ); last first.
   { intros j' P'; destruct (decide (j = j')) as [->|].
     - by rewrite (envs_lookup_envs_delete _ _ _ P).
     - rewrite envs_lookup_envs_delete_ne // envs_lookup_snoc_ne //. eauto. }
  rewrite (envs_snoc_sound Δ2 false j P) /= ?wand_elim_r; eauto.
Qed.
Lemma envs_split_sound Δ d js Δ1 Δ2 :
  envs_split d js Δ = Some (Δ1,Δ2)  of_envs Δ  of_envs Δ1  of_envs Δ2.
Proof.
  rewrite /envs_split=> ?. rewrite -(idemp bi_and (of_envs Δ)).
  rewrite {2}envs_clear_spatial_sound.
  rewrite (env_spatial_is_nil_intuitionistically (envs_clear_spatial _)) //.
  rewrite -persistently_and_intuitionistically_sep_l.
  rewrite (and_elim_l (<pers> _)%I)
          persistently_and_intuitionistically_sep_r intuitionistically_elim.
  destruct (envs_split_go _ _) as [[Δ1' Δ2']|] eqn:HΔ; [|done].
  apply envs_split_go_sound in HΔ as ->; last first.
  { intros j P. by rewrite envs_lookup_envs_clear_spatial=> ->. }
  destruct d; simplify_eq/=; solve_sep_entails.
Qed.

662
Lemma env_to_prop_sound Γ : env_to_prop Γ  [] Γ.
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
Proof.
  destruct Γ as [|Γ ? P]; simpl; first done.
  revert P. induction Γ as [|Γ IH ? Q]=>P; simpl.
  - by rewrite right_id.
  - rewrite /= IH (comm _ Q _) assoc. done.
Qed.

Global Instance envs_Forall2_refl (R : relation PROP) :
  Reflexive R  Reflexive (envs_Forall2 R).
Proof. by constructor. Qed.
Global Instance envs_Forall2_sym (R : relation PROP) :
  Symmetric R  Symmetric (envs_Forall2 R).
Proof. intros ??? [??]; by constructor. Qed.
Global Instance envs_Forall2_trans (R : relation PROP) :
  Transitive R  Transitive (envs_Forall2 R).
Proof. intros ??? [??] [??] [??]; constructor; etrans; eauto. Qed.
Global Instance envs_Forall2_antisymm (R R' : relation PROP) :
  AntiSymm R R'  AntiSymm (envs_Forall2 R) (envs_Forall2 R').
Proof. intros ??? [??] [??]; constructor; by eapply (anti_symm _). Qed.
Lemma envs_Forall2_impl (R R' : relation PROP) Δ1 Δ2 :
  envs_Forall2 R Δ1 Δ2  ( P Q, R P Q  R' P Q)  envs_Forall2 R' Δ1 Δ2.
Proof. intros [??] ?; constructor; eauto using env_Forall2_impl. Qed.

Global Instance of_envs_mono : Proper (envs_Forall2 () ==> ()) (@of_envs PROP).
Proof.
  intros [Γp1 Γs1] [Γp2 Γs2] [Hp Hs]; apply and_mono; simpl in *.
  - apply pure_mono=> -[???]. constructor;
      naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
  - by repeat f_equiv.
Qed.
Global Instance of_envs_proper :
  Proper (envs_Forall2 () ==> ()) (@of_envs PROP).
Proof.
  intros Δ1 Δ2 HΔ; apply (anti_symm ()); apply of_envs_mono;
    eapply (envs_Forall2_impl ()); [| |symmetry|]; eauto using equiv_entails.
Qed.
Global Instance Envs_proper (R : relation PROP) :
  Proper (env_Forall2 R ==> env_Forall2 R ==> eq ==> envs_Forall2 R) (@Envs PROP).
Proof. by constructor. Qed.

Global Instance envs_entails_proper :
  Proper (envs_Forall2 () ==> () ==> iff) (@envs_entails PROP).
Proof. rewrite envs_entails_eq. solve_proper. Qed.
Global Instance envs_entails_flip_mono :
  Proper (envs_Forall2 () ==> flip () ==> flip impl) (@envs_entails PROP).
Proof. rewrite envs_entails_eq=> Δ1 Δ2 ? P1 P2 <- <-. by f_equiv. Qed.
End envs.