lifting.v 27.3 KB
Newer Older
1
From iris.algebra Require Import auth gmap.
2
From iris.base_logic Require Export gen_heap.
3
From iris.base_logic.lib Require Export proph_map.
4
5
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import ectx_lifting total_ectx_lifting.
6
From iris.heap_lang Require Export lang.
7
From iris.heap_lang Require Import tactics notation.
8
From iris.proofmode Require Import tactics.
Ralf Jung's avatar
Ralf Jung committed
9
From stdpp Require Import fin_maps.
10
Set Default Proof Using "Type".
Ralf Jung's avatar
Ralf Jung committed
11

12
13
Class heapG Σ := HeapG {
  heapG_invG : invG Σ;
14
  heapG_gen_heapG :> gen_heapG loc val Σ;
15
  heapG_proph_mapG :> proph_mapG proph_id (val * val) Σ
16
17
}.

18
Instance heapG_irisG `{!heapG Σ} : irisG heap_lang Σ := {
19
  iris_invG := heapG_invG;
20
21
  state_interp σ κs _ :=
    (gen_heap_ctx σ.(heap)  proph_map_ctx κs σ.(used_proph_id))%I;
22
  fork_post _ := True%I;
23
24
25
26
}.

(** Override the notations so that scopes and coercions work out *)
Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V)
Robbert Krebbers's avatar
Robbert Krebbers committed
27
  (at level 20, q at level 50, format "l  ↦{ q }  v") : bi_scope.
28
Notation "l ↦ v" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
29
  (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : bi_scope.
30
Notation "l ↦{ q } -" := ( v, l {q} v)%I
Robbert Krebbers's avatar
Robbert Krebbers committed
31
32
  (at level 20, q at level 50, format "l  ↦{ q }  -") : bi_scope.
Notation "l ↦ -" := (l {1} -)%I (at level 20) : bi_scope.
33

34
Definition array `{!heapG Σ} (l : loc) (vs : list val) : iProp Σ :=
35
  ([ list] i  v  vs, (l + i)  v)%I.
36
37
38
Notation "l ↦∗ vs" := (array l vs)
  (at level 20, format "l  ↦∗  vs") : bi_scope.

39
40
41
42
43
44
45
46
47
(** The tactic [inv_head_step] performs inversion on hypotheses of the shape
[head_step]. The tactic will discharge head-reductions starting from values, and
simplifies hypothesis related to conversions from and to values, and finite map
operations. This tactic is slightly ad-hoc and tuned for proving our lifting
lemmas. *)
Ltac inv_head_step :=
  repeat match goal with
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
48
  | H : head_step ?e _ _ _ _ _ |- _ =>
49
50
51
52
53
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

Tej Chajed's avatar
Tej Chajed committed
54
55
Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl : core.
Local Hint Extern 0 (head_reducible_no_obs _ _) => eexists _, _, _; simpl : core.
56

57
(* [simpl apply] is too stupid, so we need extern hints here. *)
Tej Chajed's avatar
Tej Chajed committed
58
Local Hint Extern 1 (head_step _ _ _ _ _ _) => econstructor : core.
59
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasS : core.
Amin Timany's avatar
Amin Timany committed
60
Local Hint Extern 0 (head_step (AllocN _ _) _ _ _ _ _) => apply alloc_fresh : core.
Tej Chajed's avatar
Tej Chajed committed
61
62
Local Hint Extern 0 (head_step NewProph _ _ _ _ _) => apply new_proph_id_fresh : core.
Local Hint Resolve to_of_val : core.
63

64
65
66
67
68
69
70
71
72
73
Instance into_val_val v : IntoVal (Val v) v.
Proof. done. Qed.
Instance as_val_val v : AsVal (Val v).
Proof. by eexists. Qed.

Local Ltac solve_atomic :=
  apply strongly_atomic_atomic, ectx_language_atomic;
    [inversion 1; naive_solver
    |apply ectxi_language_sub_redexes_are_values; intros [] **; naive_solver].

Amin Timany's avatar
Amin Timany committed
74
Instance alloc_atomic s v w : Atomic s (AllocN (Val v) (Val w)).
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
Proof. solve_atomic. Qed.
Instance load_atomic s v : Atomic s (Load (Val v)).
Proof. solve_atomic. Qed.
Instance store_atomic s v1 v2 : Atomic s (Store (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Instance cas_atomic s v0 v1 v2 : Atomic s (CAS (Val v0) (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Instance faa_atomic s v1 v2 : Atomic s (FAA (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Instance fork_atomic s e : Atomic s (Fork e).
Proof. solve_atomic. Qed.
Instance skip_atomic s  : Atomic s Skip.
Proof. solve_atomic. Qed.
Instance new_proph_atomic s : Atomic s NewProph.
Proof. solve_atomic. Qed.
90
Instance binop_atomic s op v1 v2 : Atomic s (BinOp op (Val v1) (Val v2)).
91
92
Proof. solve_atomic. Qed.

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Instance proph_resolve_atomic s e v1 v2 :
  Atomic s e  Atomic s (Resolve e (Val v1) (Val v2)).
Proof.
  rename e into e1. intros H σ1 e2 κ σ2 efs [Ks e1' e2' Hfill -> step].
  simpl in *. induction Ks as [|K Ks _] using rev_ind; simpl in Hfill.
  - subst. inversion_clear step. by apply (H σ1 (Val v) κs σ2 efs), head_prim_step.
  - rewrite fill_app. rewrite fill_app in Hfill.
    assert ( v, Val v = fill Ks e1'  False) as fill_absurd.
    { intros v Hv. assert (to_val (fill Ks e1') = Some v) as Htv by by rewrite -Hv.
      apply to_val_fill_some in Htv. destruct Htv as [-> ->]. inversion step. }
    destruct K; (inversion Hfill; clear Hfill; subst; try
      match goal with | H : Val ?v = fill Ks e1' |- _ => by apply fill_absurd in H end).
    refine (_ (H σ1 (fill (Ks ++ [K]) e2') _ σ2 efs _)).
    + destruct s; intro Hs; simpl in *.
      * destruct Hs as [v Hs]. apply to_val_fill_some in Hs. by destruct Hs, Ks.
      * apply irreducible_resolve. by rewrite fill_app in Hs.
    + econstructor 1 with (K := Ks ++ [K]); try done. simpl. by rewrite fill_app.
Qed.

Instance resolve_proph_atomic s v1 v2 : Atomic s (ResolveProph (Val v1) (Val v2)).
Proof. by apply proph_resolve_atomic, skip_atomic. Qed.

Ralf Jung's avatar
fix TWP    
Ralf Jung committed
115
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
116
Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step.
117
Local Ltac solve_pure_exec :=
118
  subst; intros ?; apply nsteps_once, pure_head_step_pure_step;
119
    constructor; [solve_exec_safe | solve_exec_puredet].
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
(** The behavior of the various [wp_] tactics with regard to lambda differs in
the following way:

- [wp_pures] does *not* reduce lambdas/recs that are hidden behind a definition.
- [wp_rec] and [wp_lam] reduce lambdas/recs that are hidden behind a definition.

To realize this behavior, we define the class [AsRecV v f x erec], which takes a
value [v] as its input, and turns it into a [RecV f x erec] via the instance
[AsRecV_recv : AsRecV (RecV f x e) f x e]. We register this instance via
[Hint Extern] so that it is only used if [v] is syntactically a lambda/rec, and
not if [v] contains a lambda/rec that is hidden behind a definition.

To make sure that [wp_rec] and [wp_lam] do reduce lambdas/recs that are hidden
behind a definition, we activate [AsRecV_recv] by hand in these tactics. *)
135
136
Class AsRecV (v : val) (f x : binder) (erec : expr) :=
  as_recv : v = RecV f x erec.
137
138
139
140
Hint Mode AsRecV ! - - - : typeclass_instances.
Definition AsRecV_recv f x e : AsRecV (RecV f x e) f x e := eq_refl.
Hint Extern 0 (AsRecV (RecV _ _ _) _ _ _) =>
  apply AsRecV_recv : typeclass_instances.
141

142
143
144
145
146
147
148
149
150
151
152
153
Instance pure_recc f x (erec : expr) :
  PureExec True 1 (Rec f x erec) (Val $ RecV f x erec).
Proof. solve_pure_exec. Qed.
Instance pure_pairc (v1 v2 : val) :
  PureExec True 1 (Pair (Val v1) (Val v2)) (Val $ PairV v1 v2).
Proof. solve_pure_exec. Qed.
Instance pure_injlc (v : val) :
  PureExec True 1 (InjL $ Val v) (Val $ InjLV v).
Proof. solve_pure_exec. Qed.
Instance pure_injrc (v : val) :
  PureExec True 1 (InjR $ Val v) (Val $ InjRV v).
Proof. solve_pure_exec. Qed.
154

155
Instance pure_beta f x (erec : expr) (v1 v2 : val) `{!AsRecV v1 f x erec} :
156
157
158
159
160
  PureExec True 1 (App (Val v1) (Val v2)) (subst' x v2 (subst' f v1 erec)).
Proof. unfold AsRecV in *. solve_pure_exec. Qed.

Instance pure_unop op v v' :
  PureExec (un_op_eval op v = Some v') 1 (UnOp op (Val v)) (Val v').
161
Proof. solve_pure_exec. Qed.
162

163
164
Instance pure_binop op v1 v2 v' :
  PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op (Val v1) (Val v2)) (Val v').
165
Proof. solve_pure_exec. Qed.
166

167
Instance pure_if_true e1 e2 : PureExec True 1 (If (Val $ LitV $ LitBool true) e1 e2) e1.
168
Proof. solve_pure_exec. Qed.
169

170
Instance pure_if_false e1 e2 : PureExec True 1 (If (Val $ LitV  $ LitBool false) e1 e2) e2.
171
Proof. solve_pure_exec. Qed.
172

173
174
Instance pure_fst v1 v2 :
  PureExec True 1 (Fst (Val $ PairV v1 v2)) (Val v1).
175
Proof. solve_pure_exec. Qed.
176

177
178
Instance pure_snd v1 v2 :
  PureExec True 1 (Snd (Val $ PairV v1 v2)) (Val v2).
179
Proof. solve_pure_exec. Qed.
180

181
182
Instance pure_case_inl v e1 e2 :
  PureExec True 1 (Case (Val $ InjLV v) e1 e2) (App e1 (Val v)).
183
Proof. solve_pure_exec. Qed.
184

185
186
Instance pure_case_inr v e1 e2 :
  PureExec True 1 (Case (Val $ InjRV v) e1 e2) (App e2 (Val v)).
187
Proof. solve_pure_exec. Qed.
188

189
Section lifting.
190
Context `{!heapG Σ}.
191
192
193
194
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
Implicit Types efs : list expr.
Implicit Types σ : state.
195
196
197
198
Implicit Types v : val.
Implicit Types vs : list val.
Implicit Types l : loc.
Implicit Types sz off : nat.
199

Ralf Jung's avatar
Ralf Jung committed
200
(** Fork: Not using Texan triples to avoid some unnecessary [True] *)
201
Lemma wp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
202
   WP e @ s;  {{ _, True }} -  Φ (LitV LitUnit) - WP Fork e @ s; E {{ Φ }}.
203
Proof.
204
205
206
  iIntros "He HΦ". iApply wp_lift_atomic_head_step; [done|].
  iIntros (σ1 κ κs n) "Hσ !>"; iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. by iFrame.
207
Qed.
208

209
Lemma twp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
210
  WP e @ s;  [{ _, True }] - Φ (LitV LitUnit) - WP Fork e @ s; E [{ Φ }].
211
Proof.
212
213
214
  iIntros "He HΦ". iApply twp_lift_atomic_head_step; [done|].
  iIntros (σ1 κs n) "Hσ !>"; iSplit; first by eauto.
  iIntros (κ v2 σ2 efs Hstep); inv_head_step. by iFrame.
215
216
Qed.

Amin Timany's avatar
Amin Timany committed
217
218
219
220
221
222
223
Lemma array_nil l : l ↦∗ []  emp.
Proof. by rewrite /array. Qed.

Lemma array_singleton l v : l ↦∗ [v]  l  v.
Proof. by rewrite /array /= right_id loc_add_0. Qed.

Lemma array_app l vs ws :
224
  l ↦∗ (vs ++ ws)  l ↦∗ vs  (l + length vs) ↦∗ ws.
Amin Timany's avatar
Amin Timany committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
Proof.
  rewrite /array big_sepL_app.
  setoid_rewrite Nat2Z.inj_add.
  by setoid_rewrite loc_add_assoc.
Qed.

Lemma array_cons l v vs : l ↦∗ (v :: vs)  l  v  (l + 1) ↦∗ vs.
Proof.
  rewrite /array big_sepL_cons loc_add_0.
  setoid_rewrite loc_add_assoc.
  setoid_rewrite Nat2Z.inj_succ.
  by setoid_rewrite Z.add_1_l.
Qed.

Lemma heap_array_to_array l vs :
240
  ([ map] l'  v  heap_array l vs, l'  v) - l ↦∗ vs.
Amin Timany's avatar
Amin Timany committed
241
Proof.
242
243
  iIntros "Hvs". iInduction vs as [|v vs] "IH" forall (l); simpl.
  { by rewrite /array. }
Amin Timany's avatar
Amin Timany committed
244
245
246
  rewrite big_opM_union; last first.
  { apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _].
    intros (j&?&Hjl&_)%heap_array_lookup.
247
    rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl. simplify_eq; lia. }
Amin Timany's avatar
Amin Timany committed
248
249
250
251
252
  rewrite array_cons.
  rewrite big_opM_singleton; iDestruct "Hvs" as "[$ Hvs]".
  by iApply "IH".
Qed.

253
254
Lemma heap_array_to_seq_meta l vs n :
  length vs = n 
255
256
  ([ map] l'  _  heap_array l vs, meta_token l' ) -
  [ list] i  seq 0 n, meta_token (l + (i : nat)) .
257
258
259
260
261
262
263
264
265
266
267
268
Proof.
  iIntros (<-) "Hvs". iInduction vs as [|v vs] "IH" forall (l)=> //=.
  rewrite big_opM_union; last first.
  { apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _].
    intros (j&?&Hjl&_)%heap_array_lookup.
    rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl. simplify_eq; lia. }
  rewrite loc_add_0 -fmap_seq big_sepL_fmap.
  setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l.
  setoid_rewrite <-loc_add_assoc.
  rewrite big_opM_singleton; iDestruct "Hvs" as "[$ Hvs]". by iApply "IH".
Qed.

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
Lemma update_array l vs off v :
  vs !! off = Some v 
  (l ↦∗ vs - ((l + off)  v   v', (l + off)  v' - l ↦∗ <[off:=v']>vs))%I.
Proof.
  iIntros (Hlookup) "Hl".
  rewrite -[X in (l ↦∗ X)%I](take_drop_middle _ off v); last done.
  iDestruct (array_app with "Hl") as "[Hl1 Hl]".
  iDestruct (array_cons with "Hl") as "[Hl2 Hl3]".
  assert (off < length vs)%nat as H by (apply lookup_lt_is_Some; by eexists).
  rewrite take_length min_l; last by lia. iFrame "Hl2".
  iIntros (w) "Hl2".
  clear Hlookup. assert (<[off:=w]> vs !! off = Some w) as Hlookup.
  { apply list_lookup_insert. lia. }
  rewrite -[in (l ↦∗ <[off:=w]> vs)%I](take_drop_middle (<[off:=w]> vs) off w Hlookup).
  iApply array_app. rewrite take_insert; last by lia. iFrame.
  iApply array_cons. rewrite take_length min_l; last by lia. iFrame.
  rewrite drop_insert; last by lia. done.
Qed.

288
(** Heap *)
Amin Timany's avatar
Amin Timany committed
289
290
Lemma wp_allocN s E v n :
  0 < n 
291
  {{{ True }}} AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
292
  {{{ l, RET LitV (LitLoc l); l ↦∗ replicate (Z.to_nat n) v 
293
         [ list] i  seq 0 (Z.to_nat n), meta_token (l + (i : nat))  }}}.
Amin Timany's avatar
Amin Timany committed
294
295
Proof.
  iIntros (Hn Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
296
  iIntros (σ1 κ κs k) "[Hσ Hκs] !>"; iSplit; first by auto with lia.
Amin Timany's avatar
Amin Timany committed
297
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
298
  iMod (@gen_heap_alloc_gen with "Hσ") as "(Hσ & Hl & Hm)".
299
  { apply (heap_array_map_disjoint _ l (replicate (Z.to_nat n) v)); eauto.
Amin Timany's avatar
Amin Timany committed
300
    rewrite replicate_length Z2Nat.id; auto with lia. }
301
302
303
  iModIntro; iSplit; first done. iFrame "Hσ Hκs". iApply "HΦ". iSplitL "Hl".
  - by iApply heap_array_to_array.
  - iApply (heap_array_to_seq_meta with "Hm"). by rewrite replicate_length.
Amin Timany's avatar
Amin Timany committed
304
305
306
Qed.
Lemma twp_allocN s E v n :
  0 < n 
307
  [[{ True }]] AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
308
  [[{ l, RET LitV (LitLoc l); l ↦∗ replicate (Z.to_nat n) v 
309
         [ list] i  seq 0 (Z.to_nat n), meta_token (l + (i : nat))  }]].
Amin Timany's avatar
Amin Timany committed
310
311
312
313
Proof.
  iIntros (Hn Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1 κs k) "[Hσ Hκs] !>"; iSplit; first by destruct n; auto with lia.
  iIntros (κ v2 σ2 efs Hstep); inv_head_step.
314
  iMod (@gen_heap_alloc_gen with "Hσ") as "(Hσ & Hl & Hm)".
315
  { apply (heap_array_map_disjoint _ l (replicate (Z.to_nat n) v)); eauto.
Amin Timany's avatar
Amin Timany committed
316
    rewrite replicate_length Z2Nat.id; auto with lia. }
317
318
319
  iModIntro; do 2 (iSplit; first done). iFrame "Hσ Hκs". iApply "HΦ". iSplitL "Hl".
  - by iApply heap_array_to_array.
  - iApply (heap_array_to_seq_meta with "Hm"). by rewrite replicate_length.
Amin Timany's avatar
Amin Timany committed
320
321
Qed.

322
Lemma wp_alloc s E v :
323
  {{{ True }}} Alloc (Val v) @ s; E {{{ l, RET LitV (LitLoc l); l  v  meta_token l  }}}.
324
Proof.
325
326
327
  iIntros (Φ) "_ HΦ". iApply wp_allocN; auto with lia.
  iIntros "!>" (l) "/= (? & ? & _)".
  rewrite array_singleton loc_add_0. iApply "HΦ"; iFrame.
328
Qed.
329
Lemma twp_alloc s E v :
330
  [[{ True }]] Alloc (Val v) @ s; E [[{ l, RET LitV (LitLoc l); l  v  meta_token l  }]].
331
Proof.
332
333
334
  iIntros (Φ) "_ HΦ". iApply twp_allocN; auto with lia.
  iIntros (l) "/= (? & ? & _)".
  rewrite array_singleton loc_add_0. iApply "HΦ"; iFrame.
335
Qed.
336

337
Lemma wp_load s E l q v :
338
  {{{  l {q} v }}} Load (Val $ LitV $ LitLoc l) @ s; E {{{ RET v; l {q} v }}}.
339
340
Proof.
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
341
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
342
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
343
344
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
345
Lemma twp_load s E l q v :
346
  [[{ l {q} v }]] Load (Val $ LitV $ LitLoc l) @ s; E [[{ RET v; l {q} v }]].
347
348
Proof.
  iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
349
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
350
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
351
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
352
Qed.
353

354
355
356
Lemma wp_store s E l v' v :
  {{{  l  v' }}} Store (Val $ LitV (LitLoc l)) (Val v) @ s; E
  {{{ RET LitV LitUnit; l  v }}}.
357
Proof.
358
  iIntros (Φ) ">Hl HΦ".
359
  iApply wp_lift_atomic_head_step_no_fork; auto.
360
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
361
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
362
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
363
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
364
Qed.
365
366
367
Lemma twp_store s E l v' v :
  [[{ l  v' }]] Store (Val $ LitV $ LitLoc l) (Val v) @ s; E
  [[{ RET LitV LitUnit; l  v }]].
368
Proof.
369
  iIntros (Φ) "Hl HΦ".
370
  iApply twp_lift_atomic_head_step_no_fork; auto.
371
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
372
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
373
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
374
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
375
Qed.
376

377
Lemma wp_cas_fail s E l q v' v1 v2 :
378
  val_for_compare v'  val_for_compare v1  vals_cas_compare_safe v' v1 
379
  {{{  l {q} v' }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
380
  {{{ RET v'; l {q} v' }}}.
381
Proof.
382
  iIntros (?? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
383
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
384
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
385
386
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
387
Lemma twp_cas_fail s E l q v' v1 v2 :
388
  val_for_compare v'  val_for_compare v1  vals_cas_compare_safe v' v1 
389
  [[{ l {q} v' }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
390
  [[{ RET v'; l {q} v' }]].
391
Proof.
392
  iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
393
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
394
395
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
396
Qed.
397

398
399
400
Lemma wp_cas_suc s E l v1 v2 v' :
  val_for_compare v' = val_for_compare v1  vals_cas_compare_safe v' v1 
  {{{  l  v' }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
401
  {{{ RET v'; l  v2 }}}.
402
Proof.
403
  iIntros (?? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
404
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
405
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
406
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
407
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
408
Qed.
409
410
411
Lemma twp_cas_suc s E l v1 v2 v' :
  val_for_compare v' = val_for_compare v1  vals_cas_compare_safe v' v1 
  [[{ l  v' }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
412
  [[{ RET v'; l  v2 }]].
413
Proof.
414
  iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
415
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
416
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
417
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
418
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
419
Qed.
420

421
422
Lemma wp_faa s E l i1 i2 :
  {{{  l  LitV (LitInt i1) }}} FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
423
424
  {{{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }}}.
Proof.
425
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
426
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
427
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
428
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
429
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
430
Qed.
431
432
Lemma twp_faa s E l i1 i2 :
  [[{ l  LitV (LitInt i1) }]] FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
433
434
  [[{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }]].
Proof.
435
  iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
436
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
437
  iSplit; first by eauto. iIntros (κ e2 σ2 efs Hstep); inv_head_step.
438
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
439
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
440
Qed.
441

442
443
444
Lemma wp_new_proph s E :
  {{{ True }}}
    NewProph @ s; E
445
  {{{ pvs p, RET (LitV (LitProphecy p)); proph p pvs }}}.
446
447
Proof.
  iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
448
  iIntros (σ1 κ κs n) "[Hσ HR] !>". iSplit; first by eauto.
449
  iNext; iIntros (v2 σ2 efs Hstep). inv_head_step.
450
451
  iMod (proph_map_new_proph p with "HR") as "[HR Hp]"; first done.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
452
453
Qed.

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
(* In the following, strong atomicity is required due to the fact that [e] must
be able to make a head step for [Resolve e _ _] not to be (head) stuck. *)

Lemma resolve_reducible e σ p v :
  Atomic StronglyAtomic e  reducible e σ 
  reducible (Resolve e (Val (LitV (LitProphecy p))) (Val v)) σ.
Proof.
  intros A (κ & e' & σ' & efs & H).
  exists (κ ++ [(p, (default v (to_val e'), v))]), e', σ', efs.
  eapply Ectx_step with (K:=[]); try done.
  assert (w, Val w = e') as [w <-].
  { unfold Atomic in A. apply (A σ e' κ σ' efs) in H. unfold is_Some in H.
    destruct H as [w H]. exists w. simpl in H. by apply (of_to_val _ _ H). }
  simpl. constructor. by apply prim_step_to_val_is_head_step.
Qed.

Lemma step_resolve e p v σ1 κ e2 σ2 efs :
  Atomic StronglyAtomic e 
  prim_step (Resolve e (Val p) (Val v)) σ1 κ e2 σ2 efs 
  head_step (Resolve e (Val p) (Val v)) σ1 κ e2 σ2 efs.
Proof.
  intros A [Ks e1' e2' Hfill -> step]. simpl in *.
  induction Ks as [|K Ks _] using rev_ind.
  + simpl in *. subst. inversion step. by constructor.
  + rewrite fill_app /= in Hfill. destruct K; inversion Hfill; subst; clear Hfill.
    - assert (fill_item K (fill Ks e1') = fill (Ks ++ [K]) e1') as Eq1;
        first by rewrite fill_app.
      assert (fill_item K (fill Ks e2') = fill (Ks ++ [K]) e2') as Eq2;
        first by rewrite fill_app.
      rewrite fill_app /=. rewrite Eq1 in A.
      assert (is_Some (to_val (fill (Ks ++ [K]) e2'))) as H.
      { apply (A σ1 _ κ σ2 efs). eapply Ectx_step with (K0 := Ks ++ [K]); done. }
      destruct H as [v H]. apply to_val_fill_some in H. by destruct H, Ks.
    - assert (to_val (fill Ks e1') = Some p); first by rewrite -H1 //.
      apply to_val_fill_some in H. destruct H as [-> ->]. inversion step.
    - assert (to_val (fill Ks e1') = Some v); first by rewrite -H2 //.
      apply to_val_fill_some in H. destruct H as [-> ->]. inversion step.
Qed.

493
Lemma wp_resolve s E e Φ p v pvs :
494
495
  Atomic StronglyAtomic e 
  to_val e = None 
496
497
  proph p pvs -
  WP e @ s; E {{ r,  pvs', pvs = (r, v)::pvs' - proph p pvs' - Φ r }} -
498
499
500
501
502
  WP Resolve e (Val $ LitV $ LitProphecy p) (Val v) @ s; E {{ Φ }}.
Proof.
  (* TODO we should try to use a generic lifting lemma (and avoid [wp_unfold])
     here, since this breaks the WP abstraction. *)
  iIntros (A He) "Hp WPe". rewrite !wp_unfold /wp_pre /= He. simpl in *.
503
  iIntros (σ1 κ κs n) "[Hσ Hκ]". destruct κ as [|[p' [w' v']] κ' _] using rev_ind.
504
505
506
507
  - iMod ("WPe" $! σ1 [] κs n with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
    { iDestruct "Hs" as "%". iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
    iIntros (e2 σ2 efs step). exfalso. apply step_resolve in step; last done.
    inversion step. match goal with H: ?κs ++ [_] = [] |- _ => by destruct κs end.
508
  - rewrite -app_assoc.
509
    iMod ("WPe" $! σ1 _ _ n with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
510
    { iDestruct "Hs" as %?. iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
511
512
513
    iIntros (e2 σ2 efs step). apply step_resolve in step; last done.
    inversion step; simplify_list_eq.
    iMod ("WPe" $! (Val w') σ2 efs with "[%]") as "WPe".
514
    { by eexists [] _ _. }
515
516
517
    iModIntro. iNext. iMod "WPe" as "[[$ Hκ] WPe]".
    iMod (proph_map_resolve_proph p' (w',v') κs with "[$Hκ $Hp]") as (vs' ->) "[$ HPost]".
    iModIntro. rewrite !wp_unfold /wp_pre /=. iDestruct "WPe" as "[HΦ $]".
518
    iMod "HΦ". iModIntro. by iApply "HΦ".
519
520
Qed.

521
522
Lemma wp_resolve_proph s E p pvs v :
  {{{ proph p pvs }}}
523
    ResolveProph (Val $ LitV $ LitProphecy p) (Val v) @ s; E
524
  {{{ pvs', RET (LitV LitUnit); pvs = (LitV LitUnit, v)::pvs'  proph p pvs' }}}.
525
Proof.
526
  iIntros (Φ) "Hp HΦ". iApply (wp_resolve with "Hp"); first done.
527
528
  iApply wp_pure_step_later=> //=. iApply wp_value.
  iIntros "!>" (vs') "HEq Hp". iApply "HΦ". iFrame.
529
Qed.
530

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
Lemma wp_allocN_vec s E v n :
  0 < n 
  {{{ True }}}
    AllocN #n v @ s ; E
  {{{ l, RET #l; l ↦∗ vreplicate (Z.to_nat n) v 
         [ list] i  seq 0 (Z.to_nat n), meta_token (l + (i : nat))  }}}.
Proof.
  iIntros (Hzs Φ) "_ HΦ". iApply wp_allocN; [ lia | done | .. ]. iNext.
  iIntros (l) "[Hl Hm]". iApply "HΦ". rewrite vec_to_list_replicate. iFrame.
Qed.

Lemma wp_load_offset s E l off vs v :
  vs !! off = Some v 
  {{{  l ↦∗ vs }}} ! #(l + off) @ s; E {{{ RET v; l ↦∗ vs }}}.
Proof.
  iIntros (Hlookup Φ) "Hl HΦ".
  iDestruct (update_array l _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (wp_load with "Hl1"). iIntros "!> Hl1". iApply "HΦ".
  iDestruct ("Hl2" $! v) as "Hl2". rewrite list_insert_id; last done.
  iApply "Hl2". iApply "Hl1".
Qed.

Lemma wp_load_offset_vec s E l sz (off : fin sz) (vs : vec val sz) :
  {{{  l ↦∗ vs }}} ! #(l + off) @ s; E {{{ RET (vs !!! off); l ↦∗ vs }}}.
Proof. apply wp_load_offset. by apply vlookup_lookup. Qed.

Lemma wp_store_offset s E l off vs v :
  is_Some (vs !! off) 
  {{{  l ↦∗ vs }}} #(l + off) <- v @ s; E {{{ RET #(); l ↦∗ <[off:=v]> vs }}}.
Proof.
  iIntros ([w Hlookup] Φ) ">Hl HΦ".
  iDestruct (update_array l _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (wp_store with "Hl1"). iNext. iIntros "Hl1".
  iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.

Lemma wp_store_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v :
  {{{  l ↦∗ vs }}} #(l + off) <- v @ s; E {{{ RET #(); l ↦∗ vinsert off v vs }}}.
Proof.
  setoid_rewrite vec_to_list_insert. apply wp_store_offset.
  eexists. by apply vlookup_lookup.
Qed.

Ralf Jung's avatar
Ralf Jung committed
574
575
576
577
Lemma wp_cas_suc_offset s E l off vs v' v1 v2 :
  vs !! off = Some v' 
  val_for_compare v' = val_for_compare v1 
  vals_cas_compare_safe v' v1 
578
579
  {{{  l ↦∗ vs }}}
    CAS #(l + off) v1 v2 @ s; E
580
  {{{ RET v'; l ↦∗ <[off:=v2]> vs }}}.
581
Proof.
Ralf Jung's avatar
Ralf Jung committed
582
  iIntros (Hlookup ?? Φ) "Hl HΦ".
583
  iDestruct (update_array l _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
Ralf Jung's avatar
Ralf Jung committed
584
  iApply (wp_cas_suc with "Hl1"); [done..|].
585
586
587
  iNext. iIntros "Hl1". iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.

588
589
590
Lemma wp_cas_suc_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v1 v2 :
  val_for_compare (vs !!! off) = val_for_compare v1 
  vals_cas_compare_safe (vs !!! off) v1 
591
592
  {{{  l ↦∗ vs }}}
    CAS #(l + off) v1 v2 @ s; E
593
  {{{ RET (vs !!! off); l ↦∗ vinsert off v2 vs }}}.
594
Proof.
Ralf Jung's avatar
Ralf Jung committed
595
  intros. setoid_rewrite vec_to_list_insert. eapply wp_cas_suc_offset=> //.
596
597
598
599
600
  by apply vlookup_lookup.
Qed.

Lemma wp_cas_fail_offset s E l off vs v0 v1 v2 :
  vs !! off = Some v0 
Ralf Jung's avatar
Ralf Jung committed
601
  val_for_compare v0  val_for_compare v1 
602
603
604
  vals_cas_compare_safe v0 v1 
  {{{  l ↦∗ vs }}}
    CAS #(l + off) v1 v2 @ s; E
605
  {{{ RET v0; l ↦∗ vs }}}.
606
607
608
609
610
611
612
613
614
615
Proof.
  iIntros (Hlookup HNEq Hcmp Φ) ">Hl HΦ".
  iDestruct (update_array l _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (wp_cas_fail with "Hl1"); first done.
  { destruct Hcmp; by [ left | right ]. }
  iIntros "!> Hl1". iApply "HΦ". iDestruct ("Hl2" $! v0) as "Hl2".
  rewrite list_insert_id; last done. iApply "Hl2". iApply "Hl1".
Qed.

Lemma wp_cas_fail_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v1 v2 :
Ralf Jung's avatar
Ralf Jung committed
616
  val_for_compare (vs !!! off)  val_for_compare v1 
617
618
619
  vals_cas_compare_safe (vs !!! off) v1 
  {{{  l ↦∗ vs }}}
    CAS #(l + off) v1 v2 @ s; E
620
  {{{ RET (vs !!! off); l ↦∗ vs }}}.
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
Proof. intros. eapply wp_cas_fail_offset=> //. by apply vlookup_lookup. Qed.

Lemma wp_faa_offset s E l off vs (i1 i2 : Z) :
  vs !! off = Some #i1 
  {{{  l ↦∗ vs }}} FAA #(l + off) #i2 @ s; E
  {{{ RET LitV (LitInt i1); l ↦∗ <[off:=#(i1 + i2)]> vs }}}.
Proof.
  iIntros (Hlookup Φ) "Hl HΦ".
  iDestruct (update_array l _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (wp_faa with "Hl1").
  iNext. iIntros "Hl1". iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.

Lemma wp_faa_offset_vec s E l sz (off : fin sz) (vs : vec val sz) (i1 i2 : Z) :
  vs !!! off = #i1 
  {{{  l ↦∗ vs }}} FAA #(l + off) #i2 @ s; E
  {{{ RET LitV (LitInt i1); l ↦∗ vinsert off #(i1 + i2) vs }}}.
Proof.
  intros. setoid_rewrite vec_to_list_insert. apply wp_faa_offset=> //.
  by apply vlookup_lookup.
Qed.

Ralf Jung's avatar
Ralf Jung committed
643
End lifting.