auth.v 3.06 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
Require Export algebra.auth algebra.functor.
2
3
Require Export program_logic.invariants program_logic.ghost_ownership.
Import uPred ghost_ownership.
4
5

Section auth.
6
7
8
9
10
11
12
13
14
15
16
  Context {A : cmraT} `{Empty A, !CMRAIdentity A}.
  Context {Λ : language} {Σ : gid  iFunctor} (AuthI : gid) `{!InG Λ Σ AuthI (authRA A)}.
  (* TODO: Come up with notation for "iProp Λ (globalC Σ)". *)
  Context (N : namespace) (φ : A  iProp Λ (globalC Σ)).
  Implicit Types P Q R : iProp Λ (globalC Σ).
  Implicit Types a b : A.
  Implicit Types γ : gname.

  (* TODO: Need this to be proven somewhere. *)
  (* FIXME ✓ binds too strong, I need parenthesis here. *)
  Hypothesis auth_valid :
17
    forall a b, ( (Auth (Excl a) b) : iProp Λ (globalC Σ))  ( b', a  b  b').
18
19
20
21
22
23

  (* FIXME how much would break if we had a global instance from ∅ to Inhabited? *)
  Local Instance auth_inhabited : Inhabited A.
  Proof. split. exact . Qed.

  Definition auth_inv (γ : gname) : iProp Λ (globalC Σ) :=
24
25
26
    ( a, own AuthI γ ( a)  φ a)%I.
  Definition auth_own (γ : gname) (a : A) : iProp Λ (globalC Σ) := own AuthI γ ( a).
  Definition auth_ctx (γ : gname) : iProp Λ (globalC Σ) := inv N (auth_inv γ).
27
28
29

  Lemma auth_alloc a :
    a  φ a  pvs N N ( γ, auth_ctx γ  auth_own γ a).
30
  Proof.
31
32
33
34
35
36
37
38
39
40
    intros Ha. rewrite -(right_id True%I ()%I (φ _)).
    rewrite (own_alloc AuthI (Auth (Excl a) a) N) //; [].
    rewrite pvs_frame_l. apply pvs_strip_pvs.
    rewrite sep_exist_l. apply exist_elim=>γ. rewrite -(exist_intro γ).
    transitivity (auth_inv γ  auth_own γ a)%I.
    { rewrite /auth_inv -later_intro -(exist_intro a).
      rewrite (commutative _ _ (φ _)) -associative. apply sep_mono; first done.
      rewrite /auth_own -own_op auth_both_op. done. }
    rewrite (inv_alloc N) /auth_ctx pvs_frame_r. apply pvs_mono.
    by rewrite always_and_sep_l'.
41
42
  Qed.

Ralf Jung's avatar
Ralf Jung committed
43
44
  Context {Hφ :  n, Proper (dist n ==> dist n) φ}.

45
  Lemma auth_opened a γ :
Ralf Jung's avatar
Ralf Jung committed
46
    (auth_inv γ  auth_own γ a)  ( a', φ (a  a')  own AuthI γ ( (a  a')   a)).
Ralf Jung's avatar
Ralf Jung committed
47
  Proof.
Ralf Jung's avatar
Ralf Jung committed
48
    rewrite /auth_inv. rewrite sep_exist_r. apply exist_elim=>b.
49
50
51
    rewrite /auth_own [(_  φ _)%I]commutative -associative -own_op.
    rewrite own_valid_r auth_valid !sep_exist_l /=. apply exist_elim=>a'.
    rewrite [  _]left_id -(exist_intro a').
Ralf Jung's avatar
Ralf Jung committed
52
53
54
55
56
57
58
59
    apply (eq_rewrite b (a  a')
              (λ x, φ x  own AuthI γ ( x   a))%I).
    { (* TODO this asks for automation. *)
      move=>n a1 a2 Ha. by rewrite !Ha. }
    { by rewrite !sep_elim_r. }
    apply sep_mono; first done.
    by rewrite sep_elim_l.
  Qed.
Ralf Jung's avatar
Ralf Jung committed
60

61
62
63
64
  Lemma auth_closing `{!LocalUpdate φf f} a a' γ :
    φf a   (f a  a') 
    (φ (f a  a')  own AuthI γ ( (a  a')   a))
     pvs N N (auth_inv γ  auth_own γ (f a)).
Ralf Jung's avatar
Ralf Jung committed
65
  Proof.
66
    intros HL Hv. rewrite /auth_inv /auth_own -(exist_intro (f a  a')).
Ralf Jung's avatar
Ralf Jung committed
67
    rewrite [(_  φ _)%I]commutative -associative.
68
69
    rewrite -pvs_frame_l -own_op; apply sep_mono; first done.
    by apply own_update, (auth_local_update_l f).
Ralf Jung's avatar
Ralf Jung committed
70
71
  Qed.

72
End auth.