auth.v 12.7 KB
Newer Older
1
From iris.algebra Require Export excl local_updates.
2
From iris.base_logic Require Import base_logic.
3
From iris.proofmode Require Import classes.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5

6
Record auth (A : Type) := Auth { authoritative : excl' A; auth_own : A }.
7
Add Printing Constructor auth.
Robbert Krebbers's avatar
Robbert Krebbers committed
8
Arguments Auth {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Arguments authoritative {_} _.
10
Arguments auth_own {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
11
12
13
Instance: Params (@Auth) 1.
Instance: Params (@authoritative) 1.
Instance: Params (@auth_own) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
14
15
Notation "◯ a" := (Auth None a) (at level 20).
Notation "● a" := (Auth (Excl' a) ) (at level 20).
Robbert Krebbers's avatar
Robbert Krebbers committed
16

Robbert Krebbers's avatar
Robbert Krebbers committed
17
(* COFE *)
18
Section cofe.
19
Context {A : ofeT}.
20
Implicit Types a : excl' A.
21
Implicit Types b : A.
22
Implicit Types x y : auth A.
23
24

Instance auth_equiv : Equiv (auth A) := λ x y,
25
  authoritative x  authoritative y  auth_own x  auth_own y.
26
Instance auth_dist : Dist (auth A) := λ n x y,
27
  authoritative x {n} authoritative y  auth_own x {n} auth_own y.
Robbert Krebbers's avatar
Robbert Krebbers committed
28

29
Global Instance Auth_ne : NonExpansive2 (@Auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
30
Proof. by split. Qed.
31
32
Global Instance Auth_proper : Proper (() ==> () ==> ()) (@Auth A).
Proof. by split. Qed.
33
Global Instance authoritative_ne: NonExpansive (@authoritative A).
Robbert Krebbers's avatar
Robbert Krebbers committed
34
Proof. by destruct 1. Qed.
35
36
Global Instance authoritative_proper : Proper (() ==> ()) (@authoritative A).
Proof. by destruct 1. Qed.
37
Global Instance own_ne : NonExpansive (@auth_own A).
Robbert Krebbers's avatar
Robbert Krebbers committed
38
Proof. by destruct 1. Qed.
39
Global Instance own_proper : Proper (() ==> ()) (@auth_own A).
40
Proof. by destruct 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41

42
Definition auth_ofe_mixin : OfeMixin (auth A).
43
Proof. by apply (iso_ofe_mixin (λ x, (authoritative x, auth_own x))). Qed.
44
45
Canonical Structure authC := OfeT (auth A) auth_ofe_mixin.

46
47
48
49
Global Instance auth_cofe `{Cofe A} : Cofe authC.
Proof.
  apply (iso_cofe (λ y : _ * _, Auth (y.1) (y.2))
    (λ x, (authoritative x, auth_own x))); by repeat intro.
50
Qed.
51
52
53
54
55
56

Global Instance Auth_timeless a b :
  Timeless a  Timeless b  Timeless (Auth a b).
Proof. by intros ?? [??] [??]; split; apply: timeless. Qed.
Global Instance auth_discrete : Discrete A  Discrete authC.
Proof. intros ? [??]; apply _. Qed.
57
Global Instance auth_leibniz : LeibnizEquiv A  LeibnizEquiv (auth A).
58
Proof. by intros ? [??] [??] [??]; f_equal/=; apply leibniz_equiv. Qed.
59
60
61
End cofe.

Arguments authC : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
62
63

(* CMRA *)
64
Section cmra.
65
Context {A : ucmraT}.
66
67
Implicit Types a b : A.
Implicit Types x y : auth A.
68

69
70
Instance auth_valid : Valid (auth A) := λ x,
  match authoritative x with
71
72
  | Excl' a => ( n, auth_own x {n} a)   a
  | None =>  auth_own x
Robbert Krebbers's avatar
Robbert Krebbers committed
73
  | ExclBot' => False
74
75
  end.
Global Arguments auth_valid !_ /.
76
Instance auth_validN : ValidN (auth A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  match authoritative x with
78
79
  | Excl' a => auth_own x {n} a  {n} a
  | None => {n} auth_own x
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  | ExclBot' => False
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  end.
82
Global Arguments auth_validN _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
Instance auth_pcore : PCore (auth A) := λ x,
84
  Some (Auth (core (authoritative x)) (core (auth_own x))).
85
Instance auth_op : Op (auth A) := λ x y,
86
  Auth (authoritative x  authoritative y) (auth_own x  auth_own y).
87

88
89
90
91
92
93
94
95
96
97
98
99
100
Definition auth_valid_eq :
  valid = λ x, match authoritative x with
               | Excl' a => ( n, auth_own x {n} a)   a
               | None =>  auth_own x
               | ExclBot' => False
               end := eq_refl _.
Definition auth_validN_eq :
  validN = λ n x, match authoritative x with
                  | Excl' a => auth_own x {n} a  {n} a
                  | None => {n} auth_own x
                  | ExclBot' => False
                  end := eq_refl _.

101
Lemma auth_included (x y : auth A) :
102
  x  y  authoritative x  authoritative y  auth_own x  auth_own y.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
104
105
106
Proof.
  split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
  intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto.
Qed.
107
108

Lemma authoritative_validN n x : {n} x  {n} authoritative x.
Robbert Krebbers's avatar
Robbert Krebbers committed
109
Proof. by destruct x as [[[]|]]. Qed.
110
Lemma auth_own_validN n x : {n} x  {n} auth_own x.
111
112
113
114
Proof.
  rewrite auth_validN_eq.
  destruct x as [[[]|]]; naive_solver eauto using cmra_validN_includedN.
Qed.
115

116
117
Lemma auth_valid_discrete `{CMRADiscrete A} x :
   x  match authoritative x with
118
119
        | Excl' a => auth_own x  a   a
        | None =>  auth_own x
120
121
122
        | ExclBot' => False
        end.
Proof.
123
  rewrite auth_valid_eq. destruct x as [[[?|]|] ?]; simpl; try done.
124
125
  setoid_rewrite <-cmra_discrete_included_iff; naive_solver eauto using 0.
Qed.
126
127
Lemma auth_validN_2 n a b : {n} ( a   b)  b {n} a  {n} a.
Proof. by rewrite auth_validN_eq /= left_id. Qed.
128
129
Lemma auth_valid_discrete_2 `{CMRADiscrete A} a b :  ( a   b)  b  a   a.
Proof. by rewrite auth_valid_discrete /= left_id. Qed.
130

131
132
133
134
135
136
137
138
Lemma authoritative_valid  x :  x   authoritative x.
Proof. by destruct x as [[[]|]]. Qed.
Lemma auth_own_valid `{CMRADiscrete A} x :  x   auth_own x.
Proof.
  rewrite auth_valid_discrete.
  destruct x as [[[]|]]; naive_solver eauto using cmra_valid_included.
Qed.

139
Lemma auth_cmra_mixin : CMRAMixin (auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
140
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
142
  apply cmra_total_mixin.
  - eauto.
143
144
  - by intros n x y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
  - by intros n y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
145
  - intros n [x a] [y b] [Hx Ha]; simpl in *. rewrite !auth_validN_eq.
146
    destruct Hx as [?? Hx|]; first destruct Hx; intros ?; ofe_subst; auto.
147
148
  - intros [[[?|]|] ?]; rewrite /= ?auth_valid_eq
      ?auth_validN_eq /= ?cmra_included_includedN ?cmra_valid_validN;
149
      naive_solver eauto using O.
150
  - intros n [[[]|] ?]; rewrite !auth_validN_eq /=;
151
      naive_solver eauto using cmra_includedN_S, cmra_validN_S.
152
153
  - by split; simpl; rewrite assoc.
  - by split; simpl; rewrite comm.
Ralf Jung's avatar
Ralf Jung committed
154
155
  - by split; simpl; rewrite ?cmra_core_l.
  - by split; simpl; rewrite ?cmra_core_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
156
  - intros ??; rewrite! auth_included; intros [??].
157
    by split; simpl; apply cmra_core_mono.
158
  - assert ( n (a b1 b2 : A), b1  b2 {n} a  b1 {n} a).
159
    { intros n a b1 b2 <-; apply cmra_includedN_l. }
160
   intros n [[[a1|]|] b1] [[[a2|]|] b2]; rewrite auth_validN_eq;
161
     naive_solver eauto using cmra_validN_op_l, cmra_validN_includedN.
162
163
  - intros n x y1 y2 ? [??]; simpl in *.
    destruct (cmra_extend n (authoritative x) (authoritative y1)
164
      (authoritative y2)) as (ea1&ea2&?&?&?); auto using authoritative_validN.
165
    destruct (cmra_extend n (auth_own x) (auth_own y1) (auth_own y2))
166
167
      as (b1&b2&?&?&?); auto using auth_own_validN.
    by exists (Auth ea1 b1), (Auth ea2 b2).
Robbert Krebbers's avatar
Robbert Krebbers committed
168
Qed.
169
Canonical Structure authR := CMRAT (auth A) auth_cmra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
170

171
Global Instance auth_cmra_discrete : CMRADiscrete A  CMRADiscrete authR.
172
173
Proof.
  split; first apply _.
174
  intros [[[?|]|] ?]; rewrite auth_valid_eq auth_validN_eq /=; auto.
175
176
177
178
  - setoid_rewrite <-cmra_discrete_included_iff.
    rewrite -cmra_discrete_valid_iff. tauto.
  - by rewrite -cmra_discrete_valid_iff.
Qed.
179

180
181
182
183
Instance auth_empty : Empty (auth A) := Auth  .
Lemma auth_ucmra_mixin : UCMRAMixin (auth A).
Proof.
  split; simpl.
184
  - rewrite auth_valid_eq /=. apply ucmra_unit_valid.
185
  - by intros x; constructor; rewrite /= left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
186
  - do 2 constructor; simpl; apply (persistent_core _).
187
Qed.
188
Canonical Structure authUR := UCMRAT (auth A) auth_ucmra_mixin.
189

Robbert Krebbers's avatar
Robbert Krebbers committed
190
191
192
Global Instance auth_frag_persistent a : Persistent a  Persistent ( a).
Proof. do 2 constructor; simpl; auto. by apply persistent_core. Qed.

193
194
(** Internalized properties *)
Lemma auth_equivI {M} (x y : auth A) :
195
  x  y  (authoritative x  authoritative y  auth_own x  auth_own y : uPred M).
196
Proof. by uPred.unseal. Qed.
197
Lemma auth_validI {M} (x : auth A) :
198
   x  (match authoritative x with
199
200
          | Excl' a => ( b, a  auth_own x  b)   a
          | None =>  auth_own x
201
202
          | ExclBot' => False
          end : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
203
Proof. uPred.unseal. by destruct x as [[[]|]]. Qed.
204

205
Lemma auth_frag_op a b :  (a  b) =  a   b.
Robbert Krebbers's avatar
Robbert Krebbers committed
206
Proof. done. Qed.
207
208
Lemma auth_frag_mono a b : a  b   a   b.
Proof. intros [c ->]. rewrite auth_frag_op. apply cmra_included_l. Qed.
209

210
211
212
Global Instance auth_frag_sep_homomorphism :
  MonoidHomomorphism op op () (Auth None).
Proof. by split; [split; try apply _|]. Qed.
213
214
215

Lemma auth_both_op a b : Auth (Excl' a) b   a   b.
Proof. by rewrite /op /auth_op /= left_id. Qed.
216
217
Lemma auth_auth_valid a :  a   ( a).
Proof. intros; split; simpl; auto using ucmra_unit_leastN. Qed.
218

219
220
Lemma auth_update a b a' b' :
  (a,b) ~l~> (a',b')   a   b ~~>  a'   b'.
221
Proof.
222
223
224
225
226
  intros Hup; apply cmra_total_update.
  move=> n [[[?|]|] bf1] // [[bf2 Ha] ?]; do 2 red; simpl in *.
  move: Ha; rewrite !left_id -assoc=> Ha.
  destruct (Hup n (Some (bf1  bf2))); auto.
  split; last done. exists bf2. by rewrite -assoc.
Ralf Jung's avatar
Ralf Jung committed
227
Qed.
228

229
230
231
232
Lemma auth_update_alloc a a' b' : (a,) ~l~> (a',b')   a ~~>  a'   b'.
Proof. intros. rewrite -(right_id _ _ ( a)). by apply auth_update. Qed.
Lemma auth_update_dealloc a b a' : (a,b) ~l~> (a',)   a   b ~~>  a'.
Proof. intros. rewrite -(right_id _ _ ( a')). by apply auth_update. Qed.
233
234
235
236
237

Lemma auth_local_update (a b0 b1 a' b0' b1': A) :
  (b0, b1) ~l~> (b0', b1')  b0'  a'   a' 
  ( a   b0,  a   b1) ~l~> ( a'   b0',  a'   b1').
Proof.
238
239
240
241
242
243
244
  rewrite !local_update_unital=> Hup ? ? n /=.
  move=> [[[ac|]|] bc] /auth_validN_2 [Le Val] [] /=;
    inversion_clear 1 as [?? Ha|]; inversion_clear Ha. (* need setoid_discriminate! *)
  rewrite !left_id=> ?.
  destruct (Hup n bc) as [Hval' Heq]; eauto using cmra_validN_includedN.
  rewrite -!auth_both_op auth_validN_eq /=.
  split_and!; [by apply cmra_included_includedN|by apply cmra_valid_validN|done].
245
Qed.
246
247
End cmra.

248
Arguments authR : clear implicits.
249
Arguments authUR : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
250

251
(* Proof mode class instances *)
252
253
Instance is_op_auth_frag {A : ucmraT} (a b1 b2 : A) :
  IsOp a b1 b2  IsOp' ( a) ( b1) ( b2).
254
255
Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
256
(* Functor *)
257
Definition auth_map {A B} (f : A  B) (x : auth A) : auth B :=
258
  Auth (excl_map f <$> authoritative x) (f (auth_own x)).
259
Lemma auth_map_id {A} (x : auth A) : auth_map id x = x.
Robbert Krebbers's avatar
Robbert Krebbers committed
260
Proof. by destruct x as [[[]|]]. Qed.
261
262
Lemma auth_map_compose {A B C} (f : A  B) (g : B  C) (x : auth A) :
  auth_map (g  f) x = auth_map g (auth_map f x).
Robbert Krebbers's avatar
Robbert Krebbers committed
263
Proof. by destruct x as [[[]|]]. Qed.
264
Lemma auth_map_ext {A B : ofeT} (f g : A  B) x :
265
  ( x, f x  g x)  auth_map f x  auth_map g x.
Robbert Krebbers's avatar
Robbert Krebbers committed
266
267
Proof.
  constructor; simpl; auto.
268
  apply option_fmap_equiv_ext=> a; by apply excl_map_ext.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
Qed.
270
Instance auth_map_ne {A B : ofeT} n :
271
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@auth_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
272
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
273
274
  intros f g Hf [??] [??] [??]; split; simpl in *; [|by apply Hf].
  apply option_fmap_ne; [|done]=> x y ?; by apply excl_map_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
275
Qed.
276
277
Instance auth_map_cmra_morphism {A B : ucmraT} (f : A  B) :
  CMRAMorphism f  CMRAMorphism (auth_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
278
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
279
  split; try apply _.
280
  - intros n [[[a|]|] b]; rewrite !auth_validN_eq; try
281
282
283
      naive_solver eauto using cmra_morphism_monotoneN, cmra_morphism_validN.
  - intros [??]. apply Some_proper. by f_equiv; rewrite /= cmra_morphism_core.
  - intros [[?|]?] [[?|]?]; try apply Auth_proper=>//=; by rewrite cmra_morphism_op.
Robbert Krebbers's avatar
Robbert Krebbers committed
284
Qed.
285
Definition authC_map {A B} (f : A -n> B) : authC A -n> authC B :=
286
  CofeMor (auth_map f).
287
288
Lemma authC_map_ne A B : NonExpansive (@authC_map A B).
Proof. intros n f f' Hf [[[a|]|] b]; repeat constructor; apply Hf. Qed.
Ralf Jung's avatar
Ralf Jung committed
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
Program Definition authRF (F : urFunctor) : rFunctor := {|
  rFunctor_car A B := authR (urFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(auth_map_id x).
  apply auth_map_ext=>y; apply urFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
  apply auth_map_ext=>y; apply urFunctor_compose.
Qed.

Instance authRF_contractive F :
  urFunctorContractive F  rFunctorContractive (authRF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_contractive.
Qed.

312
313
314
Program Definition authURF (F : urFunctor) : urFunctor := {|
  urFunctor_car A B := authUR (urFunctor_car F A B);
  urFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
Ralf Jung's avatar
Ralf Jung committed
315
|}.
316
Next Obligation.
317
  by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_ne.
318
Qed.
Ralf Jung's avatar
Ralf Jung committed
319
Next Obligation.
320
  intros F A B x. rewrite /= -{2}(auth_map_id x).
321
  apply auth_map_ext=>y; apply urFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
322
323
Qed.
Next Obligation.
324
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
325
  apply auth_map_ext=>y; apply urFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
326
Qed.
327

328
329
Instance authURF_contractive F :
  urFunctorContractive F  urFunctorContractive (authURF F).
330
Proof.
331
  by intros ? A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_contractive.
332
Qed.