lifting.v 22.2 KB
Newer Older
1
From iris.algebra Require Import auth gmap.
2
From iris.base_logic Require Export gen_heap.
3
From iris.base_logic.lib Require Export proph_map.
4
5
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import ectx_lifting total_ectx_lifting.
6
From iris.heap_lang Require Export lang.
7
From iris.heap_lang Require Import tactics notation.
8
From iris.proofmode Require Import tactics.
Ralf Jung's avatar
Ralf Jung committed
9
From stdpp Require Import fin_maps.
10
Set Default Proof Using "Type".
Ralf Jung's avatar
Ralf Jung committed
11

12
13
Class heapG Σ := HeapG {
  heapG_invG : invG Σ;
14
  heapG_gen_heapG :> gen_heapG loc val Σ;
15
  heapG_proph_mapG :> proph_mapG proph_id (val * val) Σ
16
17
}.

18
Instance heapG_irisG `{!heapG Σ} : irisG heap_lang Σ := {
19
  iris_invG := heapG_invG;
20
21
  state_interp σ κs _ :=
    (gen_heap_ctx σ.(heap)  proph_map_ctx κs σ.(used_proph_id))%I;
22
  fork_post _ := True%I;
23
24
25
26
}.

(** Override the notations so that scopes and coercions work out *)
Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V)
Robbert Krebbers's avatar
Robbert Krebbers committed
27
  (at level 20, q at level 50, format "l  ↦{ q }  v") : bi_scope.
28
Notation "l ↦ v" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
29
  (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : bi_scope.
30
Notation "l ↦{ q } -" := ( v, l {q} v)%I
Robbert Krebbers's avatar
Robbert Krebbers committed
31
32
  (at level 20, q at level 50, format "l  ↦{ q }  -") : bi_scope.
Notation "l ↦ -" := (l {1} -)%I (at level 20) : bi_scope.
33

34
Definition array `{!heapG Σ} (l : loc) (vs : list val) : iProp Σ :=
35
  ([ list] i  v  vs, (l + i)  v)%I.
36
37
38
Notation "l ↦∗ vs" := (array l vs)
  (at level 20, format "l  ↦∗  vs") : bi_scope.

39
40
41
42
43
44
45
46
47
(** The tactic [inv_head_step] performs inversion on hypotheses of the shape
[head_step]. The tactic will discharge head-reductions starting from values, and
simplifies hypothesis related to conversions from and to values, and finite map
operations. This tactic is slightly ad-hoc and tuned for proving our lifting
lemmas. *)
Ltac inv_head_step :=
  repeat match goal with
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
48
  | H : head_step ?e _ _ _ _ _ |- _ =>
49
50
51
52
53
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

Tej Chajed's avatar
Tej Chajed committed
54
55
Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl : core.
Local Hint Extern 0 (head_reducible_no_obs _ _) => eexists _, _, _; simpl : core.
56

57
(* [simpl apply] is too stupid, so we need extern hints here. *)
Tej Chajed's avatar
Tej Chajed committed
58
59
60
Local Hint Extern 1 (head_step _ _ _ _ _ _) => econstructor : core.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasSucS : core.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasFailS : core.
Amin Timany's avatar
Amin Timany committed
61
Local Hint Extern 0 (head_step (AllocN _ _) _ _ _ _ _) => apply alloc_fresh : core.
Tej Chajed's avatar
Tej Chajed committed
62
63
Local Hint Extern 0 (head_step NewProph _ _ _ _ _) => apply new_proph_id_fresh : core.
Local Hint Resolve to_of_val : core.
64

65
66
67
68
69
70
71
72
73
74
Instance into_val_val v : IntoVal (Val v) v.
Proof. done. Qed.
Instance as_val_val v : AsVal (Val v).
Proof. by eexists. Qed.

Local Ltac solve_atomic :=
  apply strongly_atomic_atomic, ectx_language_atomic;
    [inversion 1; naive_solver
    |apply ectxi_language_sub_redexes_are_values; intros [] **; naive_solver].

Amin Timany's avatar
Amin Timany committed
75
Instance alloc_atomic s v w : Atomic s (AllocN (Val v) (Val w)).
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
Proof. solve_atomic. Qed.
Instance load_atomic s v : Atomic s (Load (Val v)).
Proof. solve_atomic. Qed.
Instance store_atomic s v1 v2 : Atomic s (Store (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Instance cas_atomic s v0 v1 v2 : Atomic s (CAS (Val v0) (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Instance faa_atomic s v1 v2 : Atomic s (FAA (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Instance fork_atomic s e : Atomic s (Fork e).
Proof. solve_atomic. Qed.
Instance skip_atomic s  : Atomic s Skip.
Proof. solve_atomic. Qed.
Instance new_proph_atomic s : Atomic s NewProph.
Proof. solve_atomic. Qed.
91
Instance binop_atomic s op v1 v2 : Atomic s (BinOp op (Val v1) (Val v2)).
92
93
Proof. solve_atomic. Qed.

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
Instance proph_resolve_atomic s e v1 v2 :
  Atomic s e  Atomic s (Resolve e (Val v1) (Val v2)).
Proof.
  rename e into e1. intros H σ1 e2 κ σ2 efs [Ks e1' e2' Hfill -> step].
  simpl in *. induction Ks as [|K Ks _] using rev_ind; simpl in Hfill.
  - subst. inversion_clear step. by apply (H σ1 (Val v) κs σ2 efs), head_prim_step.
  - rewrite fill_app. rewrite fill_app in Hfill.
    assert ( v, Val v = fill Ks e1'  False) as fill_absurd.
    { intros v Hv. assert (to_val (fill Ks e1') = Some v) as Htv by by rewrite -Hv.
      apply to_val_fill_some in Htv. destruct Htv as [-> ->]. inversion step. }
    destruct K; (inversion Hfill; clear Hfill; subst; try
      match goal with | H : Val ?v = fill Ks e1' |- _ => by apply fill_absurd in H end).
    refine (_ (H σ1 (fill (Ks ++ [K]) e2') _ σ2 efs _)).
    + destruct s; intro Hs; simpl in *.
      * destruct Hs as [v Hs]. apply to_val_fill_some in Hs. by destruct Hs, Ks.
      * apply irreducible_resolve. by rewrite fill_app in Hs.
    + econstructor 1 with (K := Ks ++ [K]); try done. simpl. by rewrite fill_app.
Qed.

Instance resolve_proph_atomic s v1 v2 : Atomic s (ResolveProph (Val v1) (Val v2)).
Proof. by apply proph_resolve_atomic, skip_atomic. Qed.

Ralf Jung's avatar
fix TWP    
Ralf Jung committed
116
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
117
Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step.
118
Local Ltac solve_pure_exec :=
119
  subst; intros ?; apply nsteps_once, pure_head_step_pure_step;
120
    constructor; [solve_exec_safe | solve_exec_puredet].
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
(** The behavior of the various [wp_] tactics with regard to lambda differs in
the following way:

- [wp_pures] does *not* reduce lambdas/recs that are hidden behind a definition.
- [wp_rec] and [wp_lam] reduce lambdas/recs that are hidden behind a definition.

To realize this behavior, we define the class [AsRecV v f x erec], which takes a
value [v] as its input, and turns it into a [RecV f x erec] via the instance
[AsRecV_recv : AsRecV (RecV f x e) f x e]. We register this instance via
[Hint Extern] so that it is only used if [v] is syntactically a lambda/rec, and
not if [v] contains a lambda/rec that is hidden behind a definition.

To make sure that [wp_rec] and [wp_lam] do reduce lambdas/recs that are hidden
behind a definition, we activate [AsRecV_recv] by hand in these tactics. *)
136
137
Class AsRecV (v : val) (f x : binder) (erec : expr) :=
  as_recv : v = RecV f x erec.
138
139
140
141
Hint Mode AsRecV ! - - - : typeclass_instances.
Definition AsRecV_recv f x e : AsRecV (RecV f x e) f x e := eq_refl.
Hint Extern 0 (AsRecV (RecV _ _ _) _ _ _) =>
  apply AsRecV_recv : typeclass_instances.
142

143
144
145
146
147
148
149
150
151
152
153
154
Instance pure_recc f x (erec : expr) :
  PureExec True 1 (Rec f x erec) (Val $ RecV f x erec).
Proof. solve_pure_exec. Qed.
Instance pure_pairc (v1 v2 : val) :
  PureExec True 1 (Pair (Val v1) (Val v2)) (Val $ PairV v1 v2).
Proof. solve_pure_exec. Qed.
Instance pure_injlc (v : val) :
  PureExec True 1 (InjL $ Val v) (Val $ InjLV v).
Proof. solve_pure_exec. Qed.
Instance pure_injrc (v : val) :
  PureExec True 1 (InjR $ Val v) (Val $ InjRV v).
Proof. solve_pure_exec. Qed.
155

156
Instance pure_beta f x (erec : expr) (v1 v2 : val) `{!AsRecV v1 f x erec} :
157
158
159
160
161
  PureExec True 1 (App (Val v1) (Val v2)) (subst' x v2 (subst' f v1 erec)).
Proof. unfold AsRecV in *. solve_pure_exec. Qed.

Instance pure_unop op v v' :
  PureExec (un_op_eval op v = Some v') 1 (UnOp op (Val v)) (Val v').
162
Proof. solve_pure_exec. Qed.
163

164
165
Instance pure_binop op v1 v2 v' :
  PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op (Val v1) (Val v2)) (Val v').
166
Proof. solve_pure_exec. Qed.
167

168
Instance pure_if_true e1 e2 : PureExec True 1 (If (Val $ LitV $ LitBool true) e1 e2) e1.
169
Proof. solve_pure_exec. Qed.
170

171
Instance pure_if_false e1 e2 : PureExec True 1 (If (Val $ LitV  $ LitBool false) e1 e2) e2.
172
Proof. solve_pure_exec. Qed.
173

174
175
Instance pure_fst v1 v2 :
  PureExec True 1 (Fst (Val $ PairV v1 v2)) (Val v1).
176
Proof. solve_pure_exec. Qed.
177

178
179
Instance pure_snd v1 v2 :
  PureExec True 1 (Snd (Val $ PairV v1 v2)) (Val v2).
180
Proof. solve_pure_exec. Qed.
181

182
183
Instance pure_case_inl v e1 e2 :
  PureExec True 1 (Case (Val $ InjLV v) e1 e2) (App e1 (Val v)).
184
Proof. solve_pure_exec. Qed.
185

186
187
Instance pure_case_inr v e1 e2 :
  PureExec True 1 (Case (Val $ InjRV v) e1 e2) (App e2 (Val v)).
188
Proof. solve_pure_exec. Qed.
189

190
Section lifting.
191
Context `{!heapG Σ}.
192
193
194
195
196
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
Implicit Types efs : list expr.
Implicit Types σ : state.

Ralf Jung's avatar
Ralf Jung committed
197
(** Fork: Not using Texan triples to avoid some unnecessary [True] *)
198
Lemma wp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
199
   WP e @ s;  {{ _, True }} -  Φ (LitV LitUnit) - WP Fork e @ s; E {{ Φ }}.
200
Proof.
201
202
203
  iIntros "He HΦ". iApply wp_lift_atomic_head_step; [done|].
  iIntros (σ1 κ κs n) "Hσ !>"; iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. by iFrame.
204
Qed.
205

206
Lemma twp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
207
  WP e @ s;  [{ _, True }] - Φ (LitV LitUnit) - WP Fork e @ s; E [{ Φ }].
208
Proof.
209
210
211
  iIntros "He HΦ". iApply twp_lift_atomic_head_step; [done|].
  iIntros (σ1 κs n) "Hσ !>"; iSplit; first by eauto.
  iIntros (κ v2 σ2 efs Hstep); inv_head_step. by iFrame.
212
213
Qed.

Amin Timany's avatar
Amin Timany committed
214
215
216
217
218
219
220
Lemma array_nil l : l ↦∗ []  emp.
Proof. by rewrite /array. Qed.

Lemma array_singleton l v : l ↦∗ [v]  l  v.
Proof. by rewrite /array /= right_id loc_add_0. Qed.

Lemma array_app l vs ws :
221
  l ↦∗ (vs ++ ws)  l ↦∗ vs  (l + length vs) ↦∗ ws.
Amin Timany's avatar
Amin Timany committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
Proof.
  rewrite /array big_sepL_app.
  setoid_rewrite Nat2Z.inj_add.
  by setoid_rewrite loc_add_assoc.
Qed.

Lemma array_cons l v vs : l ↦∗ (v :: vs)  l  v  (l + 1) ↦∗ vs.
Proof.
  rewrite /array big_sepL_cons loc_add_0.
  setoid_rewrite loc_add_assoc.
  setoid_rewrite Nat2Z.inj_succ.
  by setoid_rewrite Z.add_1_l.
Qed.

Lemma heap_array_to_array l vs :
237
  ([ map] l'  v  heap_array l vs, l'  v) - l ↦∗ vs.
Amin Timany's avatar
Amin Timany committed
238
Proof.
239
240
  iIntros "Hvs". iInduction vs as [|v vs] "IH" forall (l); simpl.
  { by rewrite /array. }
Amin Timany's avatar
Amin Timany committed
241
242
243
  rewrite big_opM_union; last first.
  { apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _].
    intros (j&?&Hjl&_)%heap_array_lookup.
244
    rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl. simplify_eq; lia. }
Amin Timany's avatar
Amin Timany committed
245
246
247
248
249
  rewrite array_cons.
  rewrite big_opM_singleton; iDestruct "Hvs" as "[$ Hvs]".
  by iApply "IH".
Qed.

250
251
Lemma heap_array_to_seq_meta l vs n :
  length vs = n 
252
253
  ([ map] l'  _  heap_array l vs, meta_token l' ) -
  [ list] i  seq 0 n, meta_token (l + (i : nat)) .
254
255
256
257
258
259
260
261
262
263
264
265
Proof.
  iIntros (<-) "Hvs". iInduction vs as [|v vs] "IH" forall (l)=> //=.
  rewrite big_opM_union; last first.
  { apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _].
    intros (j&?&Hjl&_)%heap_array_lookup.
    rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl. simplify_eq; lia. }
  rewrite loc_add_0 -fmap_seq big_sepL_fmap.
  setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l.
  setoid_rewrite <-loc_add_assoc.
  rewrite big_opM_singleton; iDestruct "Hvs" as "[$ Hvs]". by iApply "IH".
Qed.

266
(** Heap *)
Amin Timany's avatar
Amin Timany committed
267
268
Lemma wp_allocN s E v n :
  0 < n 
269
  {{{ True }}} AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
270
  {{{ l, RET LitV (LitLoc l); l ↦∗ replicate (Z.to_nat n) v 
271
         [ list] i  seq 0 (Z.to_nat n), meta_token (l + (i : nat))  }}}.
Amin Timany's avatar
Amin Timany committed
272
273
Proof.
  iIntros (Hn Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
274
  iIntros (σ1 κ κs k) "[Hσ Hκs] !>"; iSplit; first by auto with lia.
Amin Timany's avatar
Amin Timany committed
275
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
276
  iMod (@gen_heap_alloc_gen with "Hσ") as "(Hσ & Hl & Hm)".
277
  { apply (heap_array_map_disjoint _ l (replicate (Z.to_nat n) v)); eauto.
Amin Timany's avatar
Amin Timany committed
278
    rewrite replicate_length Z2Nat.id; auto with lia. }
279
280
281
  iModIntro; iSplit; first done. iFrame "Hσ Hκs". iApply "HΦ". iSplitL "Hl".
  - by iApply heap_array_to_array.
  - iApply (heap_array_to_seq_meta with "Hm"). by rewrite replicate_length.
Amin Timany's avatar
Amin Timany committed
282
283
284
Qed.
Lemma twp_allocN s E v n :
  0 < n 
285
  [[{ True }]] AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
286
  [[{ l, RET LitV (LitLoc l); l ↦∗ replicate (Z.to_nat n) v 
287
         [ list] i  seq 0 (Z.to_nat n), meta_token (l + (i : nat))  }]].
Amin Timany's avatar
Amin Timany committed
288
289
290
291
Proof.
  iIntros (Hn Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1 κs k) "[Hσ Hκs] !>"; iSplit; first by destruct n; auto with lia.
  iIntros (κ v2 σ2 efs Hstep); inv_head_step.
292
  iMod (@gen_heap_alloc_gen with "Hσ") as "(Hσ & Hl & Hm)".
293
  { apply (heap_array_map_disjoint _ l (replicate (Z.to_nat n) v)); eauto.
Amin Timany's avatar
Amin Timany committed
294
    rewrite replicate_length Z2Nat.id; auto with lia. }
295
296
297
  iModIntro; do 2 (iSplit; first done). iFrame "Hσ Hκs". iApply "HΦ". iSplitL "Hl".
  - by iApply heap_array_to_array.
  - iApply (heap_array_to_seq_meta with "Hm"). by rewrite replicate_length.
Amin Timany's avatar
Amin Timany committed
298
299
Qed.

300
Lemma wp_alloc s E v :
301
  {{{ True }}} Alloc (Val v) @ s; E {{{ l, RET LitV (LitLoc l); l  v  meta_token l  }}}.
302
Proof.
303
304
305
  iIntros (Φ) "_ HΦ". iApply wp_allocN; auto with lia.
  iIntros "!>" (l) "/= (? & ? & _)".
  rewrite array_singleton loc_add_0. iApply "HΦ"; iFrame.
306
Qed.
307
Lemma twp_alloc s E v :
308
  [[{ True }]] Alloc (Val v) @ s; E [[{ l, RET LitV (LitLoc l); l  v  meta_token l  }]].
309
Proof.
310
311
312
  iIntros (Φ) "_ HΦ". iApply twp_allocN; auto with lia.
  iIntros (l) "/= (? & ? & _)".
  rewrite array_singleton loc_add_0. iApply "HΦ"; iFrame.
313
Qed.
314

315
Lemma wp_load s E l q v :
316
  {{{  l {q} v }}} Load (Val $ LitV $ LitLoc l) @ s; E {{{ RET v; l {q} v }}}.
317
318
Proof.
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
319
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
320
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
321
322
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
323
Lemma twp_load s E l q v :
324
  [[{ l {q} v }]] Load (Val $ LitV $ LitLoc l) @ s; E [[{ RET v; l {q} v }]].
325
326
Proof.
  iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
327
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
328
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
329
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
330
Qed.
331

332
333
334
Lemma wp_store s E l v' v :
  {{{  l  v' }}} Store (Val $ LitV (LitLoc l)) (Val v) @ s; E
  {{{ RET LitV LitUnit; l  v }}}.
335
Proof.
336
  iIntros (Φ) ">Hl HΦ".
337
  iApply wp_lift_atomic_head_step_no_fork; auto.
338
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
339
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
340
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
341
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
342
Qed.
343
344
345
Lemma twp_store s E l v' v :
  [[{ l  v' }]] Store (Val $ LitV $ LitLoc l) (Val v) @ s; E
  [[{ RET LitV LitUnit; l  v }]].
346
Proof.
347
  iIntros (Φ) "Hl HΦ".
348
  iApply twp_lift_atomic_head_step_no_fork; auto.
349
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
350
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
351
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
352
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
353
Qed.
354

355
356
357
Lemma wp_cas_fail s E l q v' v1 v2 :
  v'  v1  vals_cas_compare_safe v' v1 
  {{{  l {q} v' }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
358
359
  {{{ RET LitV (LitBool false); l {q} v' }}}.
Proof.
360
  iIntros (?? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
361
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
362
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
363
364
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
365
366
367
Lemma twp_cas_fail s E l q v' v1 v2 :
  v'  v1  vals_cas_compare_safe v' v1 
  [[{ l {q} v' }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
368
369
  [[{ RET LitV (LitBool false); l {q} v' }]].
Proof.
370
  iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
371
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
372
373
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
374
Qed.
375

376
377
378
Lemma wp_cas_suc s E l v1 v2 :
  vals_cas_compare_safe v1 v1 
  {{{  l  v1 }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
379
380
  {{{ RET LitV (LitBool true); l  v2 }}}.
Proof.
381
  iIntros (? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
382
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
383
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
384
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
385
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
386
Qed.
387
388
389
Lemma twp_cas_suc s E l v1 v2 :
  vals_cas_compare_safe v1 v1 
  [[{ l  v1 }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
390
391
  [[{ RET LitV (LitBool true); l  v2 }]].
Proof.
392
  iIntros (? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
393
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
394
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
395
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
396
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
397
Qed.
398

399
400
Lemma wp_faa s E l i1 i2 :
  {{{  l  LitV (LitInt i1) }}} FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
401
402
  {{{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }}}.
Proof.
403
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
404
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
405
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
406
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
407
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
408
Qed.
409
410
Lemma twp_faa s E l i1 i2 :
  [[{ l  LitV (LitInt i1) }]] FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
411
412
  [[{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }]].
Proof.
413
  iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
414
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
415
  iSplit; first by eauto. iIntros (κ e2 σ2 efs Hstep); inv_head_step.
416
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
417
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
418
Qed.
419

420
421
422
423
Lemma wp_new_proph s E :
  {{{ True }}}
    NewProph @ s; E
  {{{ vs p, RET (LitV (LitProphecy p)); proph p vs }}}.
424
425
Proof.
  iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
426
  iIntros (σ1 κ κs n) "[Hσ HR] !>". iSplit; first by eauto.
427
  iNext; iIntros (v2 σ2 efs Hstep). inv_head_step.
428
429
  iMod (proph_map_new_proph p with "HR") as "[HR Hp]"; first done.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
430
431
Qed.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
(* In the following, strong atomicity is required due to the fact that [e] must
be able to make a head step for [Resolve e _ _] not to be (head) stuck. *)

Lemma resolve_reducible e σ p v :
  Atomic StronglyAtomic e  reducible e σ 
  reducible (Resolve e (Val (LitV (LitProphecy p))) (Val v)) σ.
Proof.
  intros A (κ & e' & σ' & efs & H).
  exists (κ ++ [(p, (default v (to_val e'), v))]), e', σ', efs.
  eapply Ectx_step with (K:=[]); try done.
  assert (w, Val w = e') as [w <-].
  { unfold Atomic in A. apply (A σ e' κ σ' efs) in H. unfold is_Some in H.
    destruct H as [w H]. exists w. simpl in H. by apply (of_to_val _ _ H). }
  simpl. constructor. by apply prim_step_to_val_is_head_step.
Qed.

Lemma step_resolve e p v σ1 κ e2 σ2 efs :
  Atomic StronglyAtomic e 
  prim_step (Resolve e (Val p) (Val v)) σ1 κ e2 σ2 efs 
  head_step (Resolve e (Val p) (Val v)) σ1 κ e2 σ2 efs.
Proof.
  intros A [Ks e1' e2' Hfill -> step]. simpl in *.
  induction Ks as [|K Ks _] using rev_ind.
  + simpl in *. subst. inversion step. by constructor.
  + rewrite fill_app /= in Hfill. destruct K; inversion Hfill; subst; clear Hfill.
    - assert (fill_item K (fill Ks e1') = fill (Ks ++ [K]) e1') as Eq1;
        first by rewrite fill_app.
      assert (fill_item K (fill Ks e2') = fill (Ks ++ [K]) e2') as Eq2;
        first by rewrite fill_app.
      rewrite fill_app /=. rewrite Eq1 in A.
      assert (is_Some (to_val (fill (Ks ++ [K]) e2'))) as H.
      { apply (A σ1 _ κ σ2 efs). eapply Ectx_step with (K0 := Ks ++ [K]); done. }
      destruct H as [v H]. apply to_val_fill_some in H. by destruct H, Ks.
    - assert (to_val (fill Ks e1') = Some p); first by rewrite -H1 //.
      apply to_val_fill_some in H. destruct H as [-> ->]. inversion step.
    - assert (to_val (fill Ks e1') = Some v); first by rewrite -H2 //.
      apply to_val_fill_some in H. destruct H as [-> ->]. inversion step.
Qed.

Lemma wp_resolve s E e Φ p v vs :
  Atomic StronglyAtomic e 
  to_val e = None 
  proph p vs -
  WP e @ s; E {{ r,  vs', vs = (r, v)::vs' - proph p vs' - Φ r }} -
  WP Resolve e (Val $ LitV $ LitProphecy p) (Val v) @ s; E {{ Φ }}.
Proof.
  (* TODO we should try to use a generic lifting lemma (and avoid [wp_unfold])
     here, since this breaks the WP abstraction. *)
  iIntros (A He) "Hp WPe". rewrite !wp_unfold /wp_pre /= He. simpl in *.
481
  iIntros (σ1 κ κs n) "[Hσ Hκ]". destruct κ as [|[p' [w' v']] κ' _] using rev_ind.
482
483
484
485
  - iMod ("WPe" $! σ1 [] κs n with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
    { iDestruct "Hs" as "%". iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
    iIntros (e2 σ2 efs step). exfalso. apply step_resolve in step; last done.
    inversion step. match goal with H: ?κs ++ [_] = [] |- _ => by destruct κs end.
486
  - rewrite -app_assoc.
487
    iMod ("WPe" $! σ1 _ _ n with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
488
    { iDestruct "Hs" as %?. iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
489
490
491
    iIntros (e2 σ2 efs step). apply step_resolve in step; last done.
    inversion step; simplify_list_eq.
    iMod ("WPe" $! (Val w') σ2 efs with "[%]") as "WPe".
492
    { by eexists [] _ _. }
493
494
495
    iModIntro. iNext. iMod "WPe" as "[[$ Hκ] WPe]".
    iMod (proph_map_resolve_proph p' (w',v') κs with "[$Hκ $Hp]") as (vs' ->) "[$ HPost]".
    iModIntro. rewrite !wp_unfold /wp_pre /=. iDestruct "WPe" as "[HΦ $]".
496
    iMod "HΦ". iModIntro. by iApply "HΦ".
497
498
Qed.

499
Lemma wp_resolve_proph s E p vs v :
500
  {{{ proph p vs }}}
501
    ResolveProph (Val $ LitV $ LitProphecy p) (Val v) @ s; E
502
  {{{ vs', RET (LitV LitUnit); vs = (LitV LitUnit, v)::vs'  proph p vs' }}}.
503
Proof.
504
  iIntros (Φ) "Hp HΦ". iApply (wp_resolve with "Hp"); first done.
505
506
  iApply wp_pure_step_later=> //=. iApply wp_value.
  iIntros "!>" (vs') "HEq Hp". iApply "HΦ". iFrame.
507
Qed.
508

Ralf Jung's avatar
Ralf Jung committed
509
End lifting.