csum.v 14.2 KB
Newer Older
1
From iris.algebra Require Export cmra.
2
3
From iris.base_logic Require Import base_logic.
From iris.algebra Require Import local_updates.
4
Set Default Proof Using "Type*".
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
5
6
7
8
9
10
11
12
Local Arguments pcore _ _ !_ /.
Local Arguments cmra_pcore _ !_ /.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments cmra_validN _ _ !_ /.
Local Arguments cmra_valid _  !_ /.

Inductive csum (A B : Type) :=
13
14
| Cinl : A  csum A B
| Cinr : B  csum A B
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
15
16
17
18
19
| CsumBot : csum A B.
Arguments Cinl {_ _} _.
Arguments Cinr {_ _} _.
Arguments CsumBot {_ _}.

Robbert Krebbers's avatar
Robbert Krebbers committed
20
21
22
23
24
Instance maybe_Cinl {A B} : Maybe (@Cinl A B) := λ x,
  match x with Cinl a => Some a | _ => None end.
Instance maybe_Cinr {A B} : Maybe (@Cinr A B) := λ x,
  match x with Cinr b => Some b | _ => None end.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
25
Section cofe.
26
Context {A B : ofeT}.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
27
28
29
30
31
Implicit Types a : A.
Implicit Types b : B.

(* Cofe *)
Inductive csum_equiv : Equiv (csum A B) :=
32
33
  | Cinl_equiv a a' : a  a'  Cinl a  Cinl a'
  | Cinlr_equiv b b' : b  b'  Cinr b  Cinr b'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
34
35
36
  | CsumBot_equiv : CsumBot  CsumBot.
Existing Instance csum_equiv.
Inductive csum_dist : Dist (csum A B) :=
37
38
  | Cinl_dist n a a' : a {n} a'  Cinl a {n} Cinl a'
  | Cinlr_dist n b b' : b {n} b'  Cinr b {n} Cinr b'
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
  | CsumBot_dist n : CsumBot {n} CsumBot.
Existing Instance csum_dist.

Global Instance Cinl_ne n : Proper (dist n ==> dist n) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_proper : Proper (() ==> ()) (@Cinl A B).
Proof. by constructor. Qed.
Global Instance Cinl_inj : Inj () () (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinl_inj_dist n : Inj (dist n) (dist n) (@Cinl A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_ne n : Proper (dist n ==> dist n) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_proper : Proper (() ==> ()) (@Cinr A B).
Proof. by constructor. Qed.
Global Instance Cinr_inj : Inj () () (@Cinr A B).
Proof. by inversion_clear 1. Qed.
Global Instance Cinr_inj_dist n : Inj (dist n) (dist n) (@Cinr A B).
Proof. by inversion_clear 1. Qed.

59
Definition csum_ofe_mixin : OfeMixin (csum A B).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
60
61
62
63
64
65
66
67
68
69
70
71
Proof.
  split.
  - intros mx my; split.
    + by destruct 1; constructor; try apply equiv_dist.
    + intros Hxy; feed inversion (Hxy 0); subst; constructor; try done;
      apply equiv_dist=> n; by feed inversion (Hxy n).
  - intros n; split.
    + by intros [|a|]; constructor.
    + by destruct 1; constructor.
    + destruct 1; inversion_clear 1; constructor; etrans; eauto.
  - by inversion_clear 1; constructor; apply dist_S.
Qed.
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
Canonical Structure csumC : ofeT := OfeT (csum A B) csum_ofe_mixin.

Program Definition csum_chain_l (c : chain csumC) (a : A) : chain A :=
  {| chain_car n := match c n return _ with Cinl a' => a' | _ => a end |}.
Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Program Definition csum_chain_r (c : chain csumC) (b : B) : chain B :=
  {| chain_car n := match c n return _ with Cinr b' => b' | _ => b end |}.
Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
Definition csum_compl `{Cofe A, Cofe B} : Compl csumC := λ c,
  match c 0 with
  | Cinl a => Cinl (compl (csum_chain_l c a))
  | Cinr b => Cinr (compl (csum_chain_r c b))
  | CsumBot => CsumBot
  end.
Global Program Instance csum_cofe `{Cofe A, Cofe B} : Cofe csumC :=
  {| compl := csum_compl |}.
Next Obligation.
  intros ?? n c; rewrite /compl /csum_compl.
  feed inversion (chain_cauchy c 0 n); first auto with lia; constructor.
  + rewrite (conv_compl n (csum_chain_l c a')) /=. destruct (c n); naive_solver.
  + rewrite (conv_compl n (csum_chain_r c b')) /=. destruct (c n); naive_solver.
Qed.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
Global Instance csum_discrete : Discrete A  Discrete B  Discrete csumC.
Proof. by inversion_clear 3; constructor; apply (timeless _). Qed.
Global Instance csum_leibniz :
  LeibnizEquiv A  LeibnizEquiv B  LeibnizEquiv (csumC A B).
Proof. by destruct 3; f_equal; apply leibniz_equiv. Qed.

Global Instance Cinl_timeless a : Timeless a  Timeless (Cinl a).
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
Global Instance Cinr_timeless b : Timeless b  Timeless (Cinr b).
Proof. by inversion_clear 2; constructor; apply (timeless _). Qed.
End cofe.

Arguments csumC : clear implicits.

(* Functor on COFEs *)
Definition csum_map {A A' B B'} (fA : A  A') (fB : B  B')
                    (x : csum A B) : csum A' B' :=
  match x with
  | Cinl a => Cinl (fA a)
  | Cinr b => Cinr (fB b)
  | CsumBot => CsumBot
  end.
Instance: Params (@csum_map) 4.

Lemma csum_map_id {A B} (x : csum A B) : csum_map id id x = x.
Proof. by destruct x. Qed.
Lemma csum_map_compose {A A' A'' B B' B''} (f : A  A') (f' : A'  A'')
                       (g : B  B') (g' : B'  B'') (x : csum A B) :
  csum_map (f'  f) (g'  g) x = csum_map f' g' (csum_map f g x).
Proof. by destruct x. Qed.
125
Lemma csum_map_ext {A A' B B' : ofeT} (f f' : A  A') (g g' : B  B') x :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
126
127
  ( x, f x  f' x)  ( x, g x  g' x)  csum_map f g x  csum_map f' g' x.
Proof. by destruct x; constructor. Qed.
128
Instance csum_map_cmra_ne {A A' B B' : ofeT} n :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==> dist n ==> dist n)
         (@csum_map A A' B B').
Proof. intros f f' Hf g g' Hg []; destruct 1; constructor; by apply Hf || apply Hg. Qed.
Definition csumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  csumC A B -n> csumC A' B' :=
  CofeMor (csum_map f g).
Instance csumC_map_ne A A' B B' n :
  Proper (dist n ==> dist n ==> dist n) (@csumC_map A A' B B').
Proof. by intros f f' Hf g g' Hg []; constructor. Qed.

Section cmra.
Context {A B : cmraT}.
Implicit Types a : A.
Implicit Types b : B.

(* CMRA *)
Instance csum_valid : Valid (csum A B) := λ x,
  match x with
  | Cinl a =>  a
  | Cinr b =>  b
  | CsumBot => False
  end.
Instance csum_validN : ValidN (csum A B) := λ n x,
  match x with
  | Cinl a => {n} a
  | Cinr b => {n} b
  | CsumBot => False
  end.
Instance csum_pcore : PCore (csum A B) := λ x,
  match x with
  | Cinl a => Cinl <$> pcore a
  | Cinr b => Cinr <$> pcore b
  | CsumBot => Some CsumBot
  end.
Instance csum_op : Op (csum A B) := λ x y,
  match x, y with
  | Cinl a, Cinl a' => Cinl (a  a')
  | Cinr b, Cinr b' => Cinr (b  b')
  | _, _ => CsumBot
  end.

Lemma Cinl_op a a' : Cinl a  Cinl a' = Cinl (a  a').
Proof. done. Qed.
Lemma Cinr_op b b' : Cinr b  Cinr b' = Cinr (b  b').
Proof. done. Qed.

Lemma csum_included x y :
  x  y  y = CsumBot  ( a a', x = Cinl a  y = Cinl a'  a  a')
                       ( b b', x = Cinr b  y = Cinr b'  b  b').
Proof.
  split.
  - intros [z Hy]; destruct x as [a|b|], z as [a'|b'|]; inversion_clear Hy; auto.
    + right; left; eexists _, _; split_and!; eauto. eexists; eauto.
    + right; right; eexists _, _; split_and!; eauto. eexists; eauto.
  - intros [->|[(a&a'&->&->&c&?)|(b&b'&->&->&c&?)]].
    + destruct x; exists CsumBot; constructor.
    + exists (Cinl c); by constructor.
    + exists (Cinr c); by constructor.
Qed.

Lemma csum_cmra_mixin : CMRAMixin (csum A B).
Proof.
  split.
  - intros n []; destruct 1; constructor; by cofe_subst.
  - intros ???? [n a a' Ha|n b b' Hb|n] [=]; subst; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n a a' ca) as (ca'&->&?); auto.
      exists (Cinl ca'); by repeat constructor.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      destruct (cmra_pcore_ne n b b' cb) as (cb'&->&?); auto.
      exists (Cinr cb'); by repeat constructor.
  - intros ? [a|b|] [a'|b'|] H; inversion_clear H; cofe_subst; done.
  - intros [a|b|]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
  - intros n [a|b|]; simpl; auto using cmra_validN_S.
  - intros [a1|b1|] [a2|b2|] [a3|b3|]; constructor; by rewrite ?assoc.
  - intros [a1|b1|] [a2|b2|]; constructor; by rewrite 1?comm.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      constructor; eauto using cmra_pcore_l.
  - intros [a|b|] ? [=]; subst; auto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp a ca); repeat constructor; auto.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
      feed inversion (cmra_pcore_idemp b cb); repeat constructor; auto.
  - intros x y ? [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]%csum_included [=].
    + exists CsumBot. rewrite csum_included; eauto.
    + destruct (pcore a) as [ca|] eqn:?; simplify_option_eq.
218
      destruct (cmra_pcore_mono a a' ca) as (ca'&->&?); auto.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
219
220
      exists (Cinl ca'). rewrite csum_included; eauto 10.
    + destruct (pcore b) as [cb|] eqn:?; simplify_option_eq.
221
      destruct (cmra_pcore_mono b b' cb) as (cb'&->&?); auto.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
222
223
224
      exists (Cinr cb'). rewrite csum_included; eauto 10.
  - intros n [a1|b1|] [a2|b2|]; simpl; eauto using cmra_validN_op_l; done.
  - intros n [a|b|] y1 y2 Hx Hx'.
225
226
227
228
229
230
231
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; inversion_clear Hx'.
      destruct (cmra_extend n a a1 a2) as (z1&z2&?&?&?); auto.
      exists (Cinl z1), (Cinl z2). by repeat constructor.
    + destruct y1 as [a1|b1|], y2 as [a2|b2|]; inversion_clear Hx'.
      destruct (cmra_extend n b b1 b2) as (z1&z2&?&?&?); auto.
      exists (Cinr z1), (Cinr z2). by repeat constructor.
    + by exists CsumBot, CsumBot; destruct y1, y2; inversion_clear Hx'.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
232
233
Qed.
Canonical Structure csumR :=
234
  CMRAT (csum A B) csum_ofe_mixin csum_cmra_mixin.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
235
236
237
238
239
240
241
242
243
244
245
246
247

Global Instance csum_cmra_discrete :
  CMRADiscrete A  CMRADiscrete B  CMRADiscrete csumR.
Proof.
  split; first apply _.
  by move=>[a|b|] HH /=; try apply cmra_discrete_valid.
Qed.

Global Instance Cinl_persistent a : Persistent a  Persistent (Cinl a).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.
Global Instance Cinr_persistent b : Persistent b  Persistent (Cinr b).
Proof. rewrite /Persistent /=. inversion_clear 1; by repeat constructor. Qed.

248
Global Instance Cinl_exclusive a : Exclusive a  Exclusive (Cinl a).
249
Proof. by move=> H[]? =>[/H||]. Qed.
250
Global Instance Cinr_exclusive b : Exclusive b  Exclusive (Cinr b).
251
Proof. by move=> H[]? =>[|/H|]. Qed.
252

253
254
255
256
257
Global Instance Cinl_cmra_homomorphism : CMRAHomomorphism Cinl.
Proof. split. apply _. done. Qed.
Global Instance Cinr_cmra_homomorphism : CMRAHomomorphism Cinr.
Proof. split. apply _. done. Qed.

Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
258
259
(** Internalized properties *)
Lemma csum_equivI {M} (x y : csum A B) :
260
261
262
263
264
265
  x  y  (match x, y with
            | Cinl a, Cinl a' => a  a'
            | Cinr b, Cinr b' => b  b'
            | CsumBot, CsumBot => True
            | _, _ => False
            end : uPred M).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
266
267
268
269
270
Proof.
  uPred.unseal; do 2 split; first by destruct 1.
  by destruct x, y; try destruct 1; try constructor.
Qed.
Lemma csum_validI {M} (x : csum A B) :
271
272
273
274
275
   x  (match x with
          | Cinl a =>  a
          | Cinr b =>  b
          | CsumBot => False
          end : uPred M).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
Proof. uPred.unseal. by destruct x. Qed.

(** Updates *)
Lemma csum_update_l (a1 a2 : A) : a1 ~~> a2  Cinl a1 ~~> Cinl a2.
Proof.
  intros Ha n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Ha n (Some a)).
  - by apply (Ha n None).
Qed.
Lemma csum_update_r (b1 b2 : B) : b1 ~~> b2  Cinr b1 ~~> Cinr b2.
Proof.
  intros Hb n [[a|b|]|] ?; simpl in *; auto.
  - by apply (Hb n (Some b)).
  - by apply (Hb n None).
Qed.
Lemma csum_updateP_l (P : A  Prop) (Q : csum A B  Prop) a :
  a ~~>: P  ( a', P a'  Q (Cinl a'))  Cinl a ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some a')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP_r (P : B  Prop) (Q : csum A B  Prop) b :
  b ~~>: P  ( b', P b'  Q (Cinr b'))  Cinr b  ~~>: Q.
Proof.
  intros Hx HP n mf Hm. destruct mf as [[a'|b'|]|]; try by destruct Hm.
  - destruct (Hx n (Some b')) as (c&?&?); naive_solver.
  - destruct (Hx n None) as (c&?&?); naive_solver eauto using cmra_validN_op_l.
Qed.
Lemma csum_updateP'_l (P : A  Prop) a :
  a ~~>: P  Cinl a ~~>: λ m',  a', m' = Cinl a'  P a'.
Proof. eauto using csum_updateP_l. Qed.
Lemma csum_updateP'_r (P : B  Prop) b :
  b ~~>: P  Cinr b ~~>: λ m',  b', m' = Cinr b'  P b'.
Proof. eauto using csum_updateP_r. Qed.
311
312
313

Lemma csum_local_update_l (a1 a2 a1' a2' : A) :
  (a1,a2) ~l~> (a1',a2')  (Cinl a1,Cinl a2) ~l~> (Cinl a1',Cinl a2').
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
314
Proof.
315
316
317
318
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinl)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
319
Qed.
320
321
Lemma csum_local_update_r (b1 b2 b1' b2' : B) :
  (b1,b2) ~l~> (b1',b2')  (Cinr b1,Cinr b2) ~l~> (Cinr b1',Cinr b2').
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
322
Proof.
323
324
325
326
  intros Hup n mf ? Ha1; simpl in *.
  destruct (Hup n (mf = maybe Cinr)); auto.
  { by destruct mf as [[]|]; inversion_clear Ha1. }
  split. done. by destruct mf as [[]|]; inversion_clear Ha1; constructor.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
327
Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
328
329
330
331
332
333
334
335
336
End cmra.

Arguments csumR : clear implicits.

(* Functor *)
Instance csum_map_cmra_monotone {A A' B B' : cmraT} (f : A  A') (g : B  B') :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (csum_map f g).
Proof.
  split; try apply _.
337
  - intros n [a|b|]; simpl; auto using cmra_monotone_validN.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
338
339
  - intros x y; rewrite !csum_included.
    intros [->|[(a&a'&->&->&?)|(b&b'&->&->&?)]]; simpl;
340
    eauto 10 using cmra_monotone.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
Qed.

Program Definition csumRF (Fa Fb : rFunctor) : rFunctor := {|
  rFunctor_car A B := csumR (rFunctor_car Fa A B) (rFunctor_car Fb A B);
  rFunctor_map A1 A2 B1 B2 fg := csumC_map (rFunctor_map Fa fg) (rFunctor_map Fb fg)
|}.
Next Obligation.
  by intros Fa Fb A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_ne.
Qed.
Next Obligation.
  intros Fa Fb A B x. rewrite /= -{2}(csum_map_id x).
  apply csum_map_ext=>y; apply rFunctor_id.
Qed.
Next Obligation.
  intros Fa Fb A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -csum_map_compose.
  apply csum_map_ext=>y; apply rFunctor_compose.
Qed.

Instance csumRF_contractive Fa Fb :
  rFunctorContractive Fa  rFunctorContractive Fb 
  rFunctorContractive (csumRF Fa Fb).
Proof.
  by intros ?? A1 A2 B1 B2 n f g Hfg; apply csumC_map_ne; try apply rFunctor_contractive.
Qed.