lifting.v 9.96 KB
Newer Older
1
From iris.program_logic Require Export weakestpre gen_heap.
2
From iris.program_logic Require Import ectx_lifting.
3
From iris.heap_lang Require Export lang.
4
From iris.heap_lang Require Import tactics.
5
From iris.proofmode Require Import tactics.
6
From iris.prelude Require Import fin_maps.
7
Import uPred.
8

Ralf Jung's avatar
Ralf Jung committed
9
10
(** Basic rules for language operations. *)

11
12
13
14
15
16
17
18
19
Class heapG Σ := HeapG {
  heapG_invG : invG Σ;
  heapG_gen_heapG :> gen_heapG loc val Σ
}.

Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := {
  iris_invG := heapG_invG;
  state_interp := gen_heap_ctx
}.
20
Global Opaque iris_invG.
21
22
23
24
25
26
27
28
29
30

(** Override the notations so that scopes and coercions work out *)
Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V)
  (at level 20, q at level 50, format "l  ↦{ q }  v") : uPred_scope.
Notation "l ↦ v" :=
  (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : uPred_scope.
Notation "l ↦{ q } -" := ( v, l {q} v)%I
  (at level 20, q at level 50, format "l  ↦{ q }  -") : uPred_scope.
Notation "l ↦ -" := (l {1} -)%I (at level 20) : uPred_scope.

31
32
33
34
35
36
37
38
39
(** The tactic [inv_head_step] performs inversion on hypotheses of the shape
[head_step]. The tactic will discharge head-reductions starting from values, and
simplifies hypothesis related to conversions from and to values, and finite map
operations. This tactic is slightly ad-hoc and tuned for proving our lifting
lemmas. *)
Ltac inv_head_step :=
  repeat match goal with
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
40
41
  | H : _ = of_val ?v |- _ =>
     is_var v; destruct v; first[discriminate H|injection H as H]
42
43
44
45
46
47
48
49
50
51
52
53
  | H : head_step ?e _ _ _ _ |- _ =>
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

Local Hint Extern 0 (atomic _) => solve_atomic.
Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _; simpl.

Local Hint Constructors head_step.
Local Hint Resolve alloc_fresh.
Local Hint Resolve to_of_val.
54

Ralf Jung's avatar
Ralf Jung committed
55
Section lifting.
56
Context `{heapG Σ}.
57
58
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
59
Implicit Types efs : list expr.
60
Implicit Types σ : state.
Ralf Jung's avatar
Ralf Jung committed
61

62
(** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *)
63
Lemma wp_bind {E e} K Φ :
64
  WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }}  WP fill K e @ E {{ Φ }}.
65
Proof. exact: wp_ectx_bind. Qed.
Ralf Jung's avatar
Ralf Jung committed
66

67
Lemma wp_bindi {E e} Ki Φ :
Ralf Jung's avatar
Ralf Jung committed
68
69
70
71
  WP e @ E {{ v, WP fill_item Ki (of_val v) @ E {{ Φ }} }} 
     WP fill_item Ki e @ E {{ Φ }}.
Proof. exact: weakestpre.wp_bind. Qed.

72
(** Base axioms for core primitives of the language: Stateless reductions *)
73
Lemma wp_fork E e Φ :
74
   Φ (LitV LitUnit)   WP e {{ _, True }}  WP Fork e @ E {{ Φ }}.
75
Proof.
76
  rewrite -(wp_lift_pure_det_head_step (Fork e) (Lit LitUnit) [e]) //=; eauto.
77
  - by rewrite later_sep -(wp_value _ _ (Lit _)) // big_sepL_singleton.
78
  - intros; inv_head_step; eauto.
79
Qed.
80

81
Lemma wp_rec E f x erec e1 e2 Φ :
82
  e1 = Rec f x erec 
83
  is_Some (to_val e2) 
84
  Closed (f :b: x :b: []) erec 
Robbert Krebbers's avatar
Robbert Krebbers committed
85
   WP subst' x e2 (subst' f e1 erec) @ E {{ Φ }}  WP App e1 e2 @ E {{ Φ }}.
86
Proof.
87
  intros -> [v2 ?] ?. rewrite -(wp_lift_pure_det_head_step_no_fork (App _ _)
88
    (subst' x e2 (subst' f (Rec f x erec) erec))); eauto.
89
  intros; inv_head_step; eauto.
90
Qed.
91

92
93
94
Lemma wp_un_op E op e v v' Φ :
  to_val e = Some v 
  un_op_eval op v = Some v' 
95
   Φ v'  WP UnOp op e @ E {{ Φ }}.
96
Proof.
97
  intros. rewrite -(wp_lift_pure_det_head_step_no_fork (UnOp op _) (of_val v'))
98
    -?wp_value'; eauto.
99
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
100
Qed.
101

102
103
104
Lemma wp_bin_op E op e1 e2 v1 v2 v' Φ :
  to_val e1 = Some v1  to_val e2 = Some v2 
  bin_op_eval op v1 v2 = Some v' 
105
   (Φ v')  WP BinOp op e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
106
Proof.
107
  intros. rewrite -(wp_lift_pure_det_head_step_no_fork (BinOp op _ _) (of_val v'))
108
    -?wp_value'; eauto.
109
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
110
Qed.
111

112
Lemma wp_if_true E e1 e2 Φ :
113
   WP e1 @ E {{ Φ }}  WP If (Lit (LitBool true)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
114
Proof.
115
  apply wp_lift_pure_det_head_step_no_fork; eauto.
116
  intros; inv_head_step; eauto.
117
118
Qed.

119
Lemma wp_if_false E e1 e2 Φ :
120
   WP e2 @ E {{ Φ }}  WP If (Lit (LitBool false)) e1 e2 @ E {{ Φ }}.
121
Proof.
122
  apply wp_lift_pure_det_head_step_no_fork; eauto.
123
  intros; inv_head_step; eauto.
124
Qed.
125

126
127
Lemma wp_fst E e1 v1 e2 Φ :
  to_val e1 = Some v1  is_Some (to_val e2) 
128
   Φ v1  WP Fst (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
129
Proof.
130
  intros ? [v2 ?].
131
  rewrite -(wp_lift_pure_det_head_step_no_fork (Fst _) e1) -?wp_value; eauto.
132
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
133
Qed.
134

135
136
Lemma wp_snd E e1 e2 v2 Φ :
  is_Some (to_val e1)  to_val e2 = Some v2 
137
   Φ v2  WP Snd (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
138
Proof.
139
  intros [v1 ?] ?.
140
  rewrite -(wp_lift_pure_det_head_step_no_fork (Snd _) e2) -?wp_value; eauto.
141
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
142
Qed.
143

144
145
Lemma wp_case_inl E e0 e1 e2 Φ :
  is_Some (to_val e0) 
146
   WP App e1 e0 @ E {{ Φ }}  WP Case (InjL e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
147
Proof.
148
  intros [v0 ?].
149
  rewrite -(wp_lift_pure_det_head_step_no_fork (Case _ _ _) (App e1 e0)); eauto.
150
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
151
Qed.
152

153
154
Lemma wp_case_inr E e0 e1 e2 Φ :
  is_Some (to_val e0) 
155
   WP App e2 e0 @ E {{ Φ }}  WP Case (InjR e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
156
Proof.
157
  intros [v0 ?].
158
  rewrite -(wp_lift_pure_det_head_step_no_fork (Case _ _ _) (App e2 e0)); eauto.
159
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
160
Qed.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

(** Heap *)
Lemma wp_alloc E e v :
  to_val e = Some v 
  {{{ True }}} Alloc e @ E {{{ l, RET LitV (LitLoc l); l  v }}}.
Proof.
  iIntros (<-%of_to_val Φ) "HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>"; iSplit; first by auto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.

Lemma wp_load E l q v :
  {{{  l {q} v }}} Load (Lit (LitLoc l)) @ E {{{ RET v; l {q} v }}}.
Proof.
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.

Lemma wp_store E l v' e v :
  to_val e = Some v 
  {{{  l  v' }}} Store (Lit (LitLoc l)) e @ E {{{ RET LitV LitUnit; l  v }}}.
Proof.
  iIntros (<-%of_to_val Φ) ">Hl HΦ".
  iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
  iModIntro. iSplit=>//. by iApply "HΦ".
Qed.

Lemma wp_cas_fail E l q v' e1 v1 e2 v2 :
  to_val e1 = Some v1  to_val e2 = Some v2  v'  v1 
  {{{  l {q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ E
  {{{ RET LitV (LitBool false); l {q} v' }}}.
Proof.
  iIntros (<-%of_to_val <-%of_to_val ? Φ) ">Hl HΦ".
  iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.

Lemma wp_cas_suc E l e1 v1 e2 v2 :
  to_val e1 = Some v1  to_val e2 = Some v2 
  {{{  l  v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ E
  {{{ RET LitV (LitBool true); l  v2 }}}.
Proof.
  iIntros (<-%of_to_val <-%of_to_val Φ) ">Hl HΦ".
  iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
  iModIntro. iSplit=>//. by iApply "HΦ".
Qed.
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

(** Proof rules for derived constructs *)
Lemma wp_lam E x elam e1 e2 Φ :
  e1 = Lam x elam 
  is_Some (to_val e2) 
  Closed (x :b: []) elam 
   WP subst' x e2 elam @ E {{ Φ }}  WP App e1 e2 @ E {{ Φ }}.
Proof. intros. by rewrite -(wp_rec _ BAnon) //. Qed.

Lemma wp_let E x e1 e2 Φ :
  is_Some (to_val e1)  Closed (x :b: []) e2 
   WP subst' x e1 e2 @ E {{ Φ }}  WP Let x e1 e2 @ E {{ Φ }}.
Proof. by apply wp_lam. Qed.

Lemma wp_seq E e1 e2 Φ :
  is_Some (to_val e1)  Closed [] e2 
   WP e2 @ E {{ Φ }}  WP Seq e1 e2 @ E {{ Φ }}.
Proof. intros ??. by rewrite -wp_let. Qed.

Lemma wp_skip E Φ :  Φ (LitV LitUnit)  WP Skip @ E {{ Φ }}.
Proof. rewrite -wp_seq; last eauto. by rewrite -wp_value. Qed.

Lemma wp_match_inl E e0 x1 e1 x2 e2 Φ :
  is_Some (to_val e0)  Closed (x1 :b: []) e1 
   WP subst' x1 e0 e1 @ E {{ Φ }}  WP Match (InjL e0) x1 e1 x2 e2 @ E {{ Φ }}.
Proof. intros. by rewrite -wp_case_inl // -[X in _  X]later_intro -wp_let. Qed.

Lemma wp_match_inr E e0 x1 e1 x2 e2 Φ :
  is_Some (to_val e0)  Closed (x2 :b: []) e2 
   WP subst' x2 e0 e2 @ E {{ Φ }}  WP Match (InjR e0) x1 e1 x2 e2 @ E {{ Φ }}.
Proof. intros. by rewrite -wp_case_inr // -[X in _  X]later_intro -wp_let. Qed.

Lemma wp_le E (n1 n2 : Z) P Φ :
  (n1  n2  P   Φ (LitV (LitBool true))) 
  (n2 < n1  P   Φ (LitV (LitBool false))) 
  P  WP BinOp LeOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}.
Proof.
  intros. rewrite -wp_bin_op //; [].
  destruct (bool_decide_reflect (n1  n2)); by eauto with omega.
Qed.

Lemma wp_lt E (n1 n2 : Z) P Φ :
  (n1 < n2  P   Φ (LitV (LitBool true))) 
  (n2  n1  P   Φ (LitV (LitBool false))) 
  P  WP BinOp LtOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}.
Proof.
  intros. rewrite -wp_bin_op //; [].
  destruct (bool_decide_reflect (n1 < n2)); by eauto with omega.
Qed.

Lemma wp_eq E e1 e2 v1 v2 P Φ :
  to_val e1 = Some v1  to_val e2 = Some v2 
  (v1 = v2  P   Φ (LitV (LitBool true))) 
  (v1  v2  P   Φ (LitV (LitBool false))) 
  P  WP BinOp EqOp e1 e2 @ E {{ Φ }}.
Proof.
  intros. rewrite -wp_bin_op //; [].
  destruct (bool_decide_reflect (v1 = v2)); by eauto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
279
End lifting.