proofmode.v 3.96 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.proofmode Require Import tactics.
2
From iris.base_logic.lib Require Import invariants.
3
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
4

5
Lemma demo_0 {M : ucmraT} (P Q : uPred M) :
6
   (P  Q) - ( x, x = 0  x = 1)  (Q  P).
7 8 9 10 11 12 13 14
Proof.
  iIntros "#H #H2".
  (* should remove the disjunction "H" *)
  iDestruct "H" as "[?|?]"; last by iLeft.
  (* should keep the disjunction "H" because it is instantiated *)
  iDestruct ("H2" $! 10) as "[%|%]". done. done.
Qed.

15
Lemma demo_1 (M : ucmraT) (P1 P2 P3 : nat  uPred M) :
16
  ( (x y : nat) a b,
Robbert Krebbers's avatar
Robbert Krebbers committed
17
    x  y 
18 19 20
     (uPred_ownM (a  b) -
    ( y1 y2 c, P1 ((x + y1) + y2)  True   uPred_ownM c) -
      ( z, P2 z  True  P2 z) -
Ralf Jung's avatar
Ralf Jung committed
21
     ( n m : nat, P1 n   ((True  P2 n)   (n = n  P3 n))) -
22
     x = 0   x z,  P3 (x + z)  uPred_ownM b  uPred_ownM (core b)))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
23
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
24
  iIntros (i [|j] a b ?) "!# [Ha Hb] H1 #H2 H3"; setoid_subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
25 26
  { iLeft. by iNext. }
  iRight.
27
  iDestruct "H1" as (z1 z2 c) "(H1&_&#Hc)".
28
  iPoseProof "Hc" as "foo".
29
  iRevert (a b) "Ha Hb". iIntros (b a) "Hb {foo} Ha".
30
  iAssert (uPred_ownM (a  core a)) with "[Ha]" as "[Ha #Hac]".
Robbert Krebbers's avatar
Robbert Krebbers committed
31
  { by rewrite cmra_core_r. }
32
  iIntros "{$Hac $Ha}".
Robbert Krebbers's avatar
Robbert Krebbers committed
33 34
  iExists (S j + z1), z2.
  iNext.
35
  iApply ("H3" $! _ 0 with "H1 []").
36
  - iSplit. done. iApply "H2". iLeft. iApply "H2". by iRight.
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39
  - done.
Qed.

40
Lemma demo_2 (M : ucmraT) (P1 P2 P3 P4 Q : uPred M) (P5 : nat  uPredC M):
41 42 43
  P2  (P3  Q)  True  P1  P2  (P4  ( x:nat, P5 x  P3))  True -
    P1 - (True  True) -
  (((P2  False  P2  0 = 0)  P3)  Q  P1  True) 
44
     (P2  False)  (False  P5 0).
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46 47 48 49 50 51 52 53 54 55
Proof.
  (* Intro-patterns do something :) *)
  iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]".
  (* To test destruct: can also be part of the intro-pattern *)
  iDestruct "foo" as "[_ meh]".
  repeat iSplit; [|by iLeft|iIntros "#[]"].
  iFrame "H2".
  (* split takes a list of hypotheses just for the LHS *)
  iSplitL "H3".
  * iFrame "H3". by iRight.
  * iSplitL "HQ". iAssumption. by iSplitL "H1".
Robbert Krebbers's avatar
Robbert Krebbers committed
56 57
Qed.

58
Lemma demo_3 (M : ucmraT) (P1 P2 P3 : uPred M) :
59
  P1  P2  P3 -  P1   (P2   x, (P3  x = 0)  P3).
60 61 62 63 64
Proof. iIntros "($ & $ & H)". iFrame "H". iNext. by iExists 0. Qed.

Definition foo {M} (P : uPred M) := (P  P)%I.
Definition bar {M} : uPred M := ( P, foo P)%I.

65
Lemma demo_4 (M : ucmraT) : True - @bar M.
66
Proof. iIntros. iIntros (P) "HP". done. Qed.
67

68
Lemma demo_5 (M : ucmraT) (x y : M) (P : uPred M) :
69
  ( z, P  z  y) - (P - (x,x)  (y,x)).
70 71
Proof.
  iIntros "H1 H2".
72
  iRewrite (uPred.internal_eq_sym x x with "[#]"); first done.
73
  iRewrite -("H1" $! _ with "[-]"); first done.
74
  done.
75 76
Qed.

77
Lemma demo_6 (M : ucmraT) (P Q : uPred M) :
78 79
  ( x y z : nat,
    x = plus 0 x  y = 0  z = 0  P   Q  foo (x  x))%I.
80
Proof.
81
  iIntros (a) "*".
82
  iIntros "#Hfoo **".
83
  by iIntros "# _".
84
Qed.
85

86
Lemma demo_7 (M : ucmraT) (P Q1 Q2 : uPred M) : P  (Q1  Q2) - P  Q1.
87 88
Proof. iIntros "[H1 [H2 _]]". by iFrame. Qed.

89
Section iris.
90
  Context `{invG Σ}.
91
  Implicit Types E : coPset.
92
  Implicit Types P Q : iProp Σ.
93

94
  Lemma demo_8 N E P Q R :
95
    N  E 
96
    (True - P - inv N Q - True - R) - P -  Q ={E}= R.
97
  Proof.
98
    iIntros (?) "H HP HQ".
99
    iApply ("H" with "[#] HP >[HQ] >").
100 101
    - done.
    - by iApply inv_alloc.
102
    - done.
103
  Qed.
104
End iris.
105 106

Lemma demo_9 (M : ucmraT) (x y z : M) :
107
   x  y  z - ( x   x  y  z : uPred M).
108
Proof. iIntros (Hv) "Hxy". by iFrame (Hv Hv) "Hxy". Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110 111 112 113 114 115 116 117 118

Lemma demo_10 (M : ucmraT) (P Q : uPred M) : P - Q - True.
Proof.
  iIntros "HP HQ".
  iAssert True%I as "#_". { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as "#_". { Fail iClear "HQ". by iClear "HP". }
  iAssert True%I as %_. { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". }
  done.
Qed.