lifting.v 21.1 KB
Newer Older
1
From iris.algebra Require Import auth gmap.
2
From iris.base_logic Require Export gen_heap.
3
From iris.base_logic.lib Require Export proph_map.
4 5
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import ectx_lifting total_ectx_lifting.
6
From iris.heap_lang Require Export lang.
7
From iris.heap_lang Require Import tactics.
8
From iris.proofmode Require Import tactics.
Ralf Jung's avatar
Ralf Jung committed
9
From stdpp Require Import fin_maps.
10
Set Default Proof Using "Type".
Ralf Jung's avatar
Ralf Jung committed
11

12 13
Class heapG Σ := HeapG {
  heapG_invG : invG Σ;
14
  heapG_gen_heapG :> gen_heapG loc val Σ;
15
  heapG_proph_mapG :> proph_mapG proph_id (val * val) Σ
16 17
}.

18
Instance heapG_irisG `{!heapG Σ} : irisG heap_lang Σ := {
19
  iris_invG := heapG_invG;
20 21
  state_interp σ κs _ :=
    (gen_heap_ctx σ.(heap)  proph_map_ctx κs σ.(used_proph_id))%I;
22
  fork_post _ := True%I;
23 24 25 26
}.

(** Override the notations so that scopes and coercions work out *)
Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V)
Robbert Krebbers's avatar
Robbert Krebbers committed
27
  (at level 20, q at level 50, format "l  ↦{ q }  v") : bi_scope.
28
Notation "l ↦ v" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
29
  (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : bi_scope.
30
Notation "l ↦{ q } -" := ( v, l {q} v)%I
Robbert Krebbers's avatar
Robbert Krebbers committed
31 32
  (at level 20, q at level 50, format "l  ↦{ q }  -") : bi_scope.
Notation "l ↦ -" := (l {1} -)%I (at level 20) : bi_scope.
33

34 35 36 37 38
Definition array `{!heapG Σ} (l : loc) (vs : list val) : iProp Σ :=
  ([ list] i  v  vs, loc_add l i  v)%I.
Notation "l ↦∗ vs" := (array l vs)
  (at level 20, format "l  ↦∗  vs") : bi_scope.

39 40 41 42 43 44 45 46 47
(** The tactic [inv_head_step] performs inversion on hypotheses of the shape
[head_step]. The tactic will discharge head-reductions starting from values, and
simplifies hypothesis related to conversions from and to values, and finite map
operations. This tactic is slightly ad-hoc and tuned for proving our lifting
lemmas. *)
Ltac inv_head_step :=
  repeat match goal with
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
48
  | H : head_step ?e _ _ _ _ _ |- _ =>
49 50 51 52 53
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

Tej Chajed's avatar
Tej Chajed committed
54 55
Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl : core.
Local Hint Extern 0 (head_reducible_no_obs _ _) => eexists _, _, _; simpl : core.
56

57
(* [simpl apply] is too stupid, so we need extern hints here. *)
Tej Chajed's avatar
Tej Chajed committed
58 59 60
Local Hint Extern 1 (head_step _ _ _ _ _ _) => econstructor : core.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasSucS : core.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasFailS : core.
Amin Timany's avatar
Amin Timany committed
61
Local Hint Extern 0 (head_step (AllocN _ _) _ _ _ _ _) => apply alloc_fresh : core.
Tej Chajed's avatar
Tej Chajed committed
62 63
Local Hint Extern 0 (head_step NewProph _ _ _ _ _) => apply new_proph_id_fresh : core.
Local Hint Resolve to_of_val : core.
64

65 66 67 68 69 70 71 72 73 74
Instance into_val_val v : IntoVal (Val v) v.
Proof. done. Qed.
Instance as_val_val v : AsVal (Val v).
Proof. by eexists. Qed.

Local Ltac solve_atomic :=
  apply strongly_atomic_atomic, ectx_language_atomic;
    [inversion 1; naive_solver
    |apply ectxi_language_sub_redexes_are_values; intros [] **; naive_solver].

Amin Timany's avatar
Amin Timany committed
75
Instance alloc_atomic s v w : Atomic s (AllocN (Val v) (Val w)).
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
Proof. solve_atomic. Qed.
Instance load_atomic s v : Atomic s (Load (Val v)).
Proof. solve_atomic. Qed.
Instance store_atomic s v1 v2 : Atomic s (Store (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Instance cas_atomic s v0 v1 v2 : Atomic s (CAS (Val v0) (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Instance faa_atomic s v1 v2 : Atomic s (FAA (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Instance fork_atomic s e : Atomic s (Fork e).
Proof. solve_atomic. Qed.
Instance skip_atomic s  : Atomic s Skip.
Proof. solve_atomic. Qed.
Instance new_proph_atomic s : Atomic s NewProph.
Proof. solve_atomic. Qed.
91
Instance binop_atomic s op v1 v2 : Atomic s (BinOp op (Val v1) (Val v2)).
92 93
Proof. solve_atomic. Qed.

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
Instance proph_resolve_atomic s e v1 v2 :
  Atomic s e  Atomic s (Resolve e (Val v1) (Val v2)).
Proof.
  rename e into e1. intros H σ1 e2 κ σ2 efs [Ks e1' e2' Hfill -> step].
  simpl in *. induction Ks as [|K Ks _] using rev_ind; simpl in Hfill.
  - subst. inversion_clear step. by apply (H σ1 (Val v) κs σ2 efs), head_prim_step.
  - rewrite fill_app. rewrite fill_app in Hfill.
    assert ( v, Val v = fill Ks e1'  False) as fill_absurd.
    { intros v Hv. assert (to_val (fill Ks e1') = Some v) as Htv by by rewrite -Hv.
      apply to_val_fill_some in Htv. destruct Htv as [-> ->]. inversion step. }
    destruct K; (inversion Hfill; clear Hfill; subst; try
      match goal with | H : Val ?v = fill Ks e1' |- _ => by apply fill_absurd in H end).
    refine (_ (H σ1 (fill (Ks ++ [K]) e2') _ σ2 efs _)).
    + destruct s; intro Hs; simpl in *.
      * destruct Hs as [v Hs]. apply to_val_fill_some in Hs. by destruct Hs, Ks.
      * apply irreducible_resolve. by rewrite fill_app in Hs.
    + econstructor 1 with (K := Ks ++ [K]); try done. simpl. by rewrite fill_app.
Qed.

Instance resolve_proph_atomic s v1 v2 : Atomic s (ResolveProph (Val v1) (Val v2)).
Proof. by apply proph_resolve_atomic, skip_atomic. Qed.

Ralf Jung's avatar
fix TWP  
Ralf Jung committed
116
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
117
Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step.
118
Local Ltac solve_pure_exec :=
119
  subst; intros ?; apply nsteps_once, pure_head_step_pure_step;
120
    constructor; [solve_exec_safe | solve_exec_puredet].
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135
(** The behavior of the various [wp_] tactics with regard to lambda differs in
the following way:

- [wp_pures] does *not* reduce lambdas/recs that are hidden behind a definition.
- [wp_rec] and [wp_lam] reduce lambdas/recs that are hidden behind a definition.

To realize this behavior, we define the class [AsRecV v f x erec], which takes a
value [v] as its input, and turns it into a [RecV f x erec] via the instance
[AsRecV_recv : AsRecV (RecV f x e) f x e]. We register this instance via
[Hint Extern] so that it is only used if [v] is syntactically a lambda/rec, and
not if [v] contains a lambda/rec that is hidden behind a definition.

To make sure that [wp_rec] and [wp_lam] do reduce lambdas/recs that are hidden
behind a definition, we activate [AsRecV_recv] by hand in these tactics. *)
136 137
Class AsRecV (v : val) (f x : binder) (erec : expr) :=
  as_recv : v = RecV f x erec.
138 139 140 141
Hint Mode AsRecV ! - - - : typeclass_instances.
Definition AsRecV_recv f x e : AsRecV (RecV f x e) f x e := eq_refl.
Hint Extern 0 (AsRecV (RecV _ _ _) _ _ _) =>
  apply AsRecV_recv : typeclass_instances.
142

143 144 145 146 147 148 149 150 151 152 153 154
Instance pure_recc f x (erec : expr) :
  PureExec True 1 (Rec f x erec) (Val $ RecV f x erec).
Proof. solve_pure_exec. Qed.
Instance pure_pairc (v1 v2 : val) :
  PureExec True 1 (Pair (Val v1) (Val v2)) (Val $ PairV v1 v2).
Proof. solve_pure_exec. Qed.
Instance pure_injlc (v : val) :
  PureExec True 1 (InjL $ Val v) (Val $ InjLV v).
Proof. solve_pure_exec. Qed.
Instance pure_injrc (v : val) :
  PureExec True 1 (InjR $ Val v) (Val $ InjRV v).
Proof. solve_pure_exec. Qed.
155

156
Instance pure_beta f x (erec : expr) (v1 v2 : val) `{!AsRecV v1 f x erec} :
157 158 159 160 161
  PureExec True 1 (App (Val v1) (Val v2)) (subst' x v2 (subst' f v1 erec)).
Proof. unfold AsRecV in *. solve_pure_exec. Qed.

Instance pure_unop op v v' :
  PureExec (un_op_eval op v = Some v') 1 (UnOp op (Val v)) (Val v').
162
Proof. solve_pure_exec. Qed.
163

164 165
Instance pure_binop op v1 v2 v' :
  PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op (Val v1) (Val v2)) (Val v').
166
Proof. solve_pure_exec. Qed.
167

168
Instance pure_if_true e1 e2 : PureExec True 1 (If (Val $ LitV $ LitBool true) e1 e2) e1.
169
Proof. solve_pure_exec. Qed.
170

171
Instance pure_if_false e1 e2 : PureExec True 1 (If (Val $ LitV  $ LitBool false) e1 e2) e2.
172
Proof. solve_pure_exec. Qed.
173

174 175
Instance pure_fst v1 v2 :
  PureExec True 1 (Fst (Val $ PairV v1 v2)) (Val v1).
176
Proof. solve_pure_exec. Qed.
177

178 179
Instance pure_snd v1 v2 :
  PureExec True 1 (Snd (Val $ PairV v1 v2)) (Val v2).
180
Proof. solve_pure_exec. Qed.
181

182 183
Instance pure_case_inl v e1 e2 :
  PureExec True 1 (Case (Val $ InjLV v) e1 e2) (App e1 (Val v)).
184
Proof. solve_pure_exec. Qed.
185

186 187
Instance pure_case_inr v e1 e2 :
  PureExec True 1 (Case (Val $ InjRV v) e1 e2) (App e2 (Val v)).
188
Proof. solve_pure_exec. Qed.
189

190
Section lifting.
191
Context `{!heapG Σ}.
192 193 194 195 196
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
Implicit Types efs : list expr.
Implicit Types σ : state.

Ralf Jung's avatar
Ralf Jung committed
197
(** Fork: Not using Texan triples to avoid some unnecessary [True] *)
198
Lemma wp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
199
   WP e @ s;  {{ _, True }} -  Φ (LitV LitUnit) - WP Fork e @ s; E {{ Φ }}.
200
Proof.
201 202 203
  iIntros "He HΦ". iApply wp_lift_atomic_head_step; [done|].
  iIntros (σ1 κ κs n) "Hσ !>"; iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. by iFrame.
204
Qed.
205

206
Lemma twp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
207
  WP e @ s;  [{ _, True }] - Φ (LitV LitUnit) - WP Fork e @ s; E [{ Φ }].
208
Proof.
209 210 211
  iIntros "He HΦ". iApply twp_lift_atomic_head_step; [done|].
  iIntros (σ1 κs n) "Hσ !>"; iSplit; first by eauto.
  iIntros (κ v2 σ2 efs Hstep); inv_head_step. by iFrame.
212 213
Qed.

Amin Timany's avatar
Amin Timany committed
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
Lemma array_nil l : l ↦∗ []  emp.
Proof. by rewrite /array. Qed.

Lemma array_singleton l v : l ↦∗ [v]  l  v.
Proof. by rewrite /array /= right_id loc_add_0. Qed.

Lemma array_app l vs ws :
  l ↦∗ (vs ++ ws)  l ↦∗ vs  (loc_add l (length vs)) ↦∗ ws.
Proof.
  rewrite /array big_sepL_app.
  setoid_rewrite Nat2Z.inj_add.
  by setoid_rewrite loc_add_assoc.
Qed.

Lemma array_cons l v vs : l ↦∗ (v :: vs)  l  v  (l + 1) ↦∗ vs.
Proof.
  rewrite /array big_sepL_cons loc_add_0.
  setoid_rewrite loc_add_assoc.
  setoid_rewrite Nat2Z.inj_succ.
  by setoid_rewrite Z.add_1_l.
Qed.

Lemma heap_array_to_array l vs :
  ([ map] i  v  heap_array l vs, i  v)%I - l ↦∗ vs.
Proof.
  iIntros "Hvs".
  iInduction vs as [|v vs] "IH" forall (l); simpl.
  { by rewrite big_opM_empty /array big_opL_nil. }
  rewrite big_opM_union; last first.
  { apply map_disjoint_spec=> l' v1 v2 /lookup_singleton_Some [-> _].
    intros (j&?&Hjl&_)%heap_array_lookup.
    rewrite loc_add_assoc -{1}[l']loc_add_0 in Hjl;
      apply loc_add_inj in Hjl; lia. }
  rewrite array_cons.
  rewrite big_opM_singleton; iDestruct "Hvs" as "[$ Hvs]".
  by iApply "IH".
Qed.

252
(** Heap *)
Amin Timany's avatar
Amin Timany committed
253 254
Lemma wp_allocN s E v n :
  0 < n 
255 256
  {{{ True }}} AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
  {{{ l, RET LitV (LitLoc l); l ↦∗ replicate (Z.to_nat n) v }}}.
Amin Timany's avatar
Amin Timany committed
257 258 259 260 261
Proof.
  iIntros (Hn Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1 κ κs k) "[Hσ Hκs] !>"; iSplit; first by destruct n; auto with lia.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_alloc_gen with "Hσ") as "[Hσ Hl]".
262
  { apply (heap_array_map_disjoint _ l (replicate (Z.to_nat n) v)); eauto.
Amin Timany's avatar
Amin Timany committed
263 264 265 266 267 268 269
    rewrite replicate_length Z2Nat.id; auto with lia. }
  iModIntro; iSplit; auto.
  iFrame. iApply "HΦ".
  by iApply heap_array_to_array.
Qed.
Lemma twp_allocN s E v n :
  0 < n 
270 271
  [[{ True }]] AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
  [[{ l, RET LitV (LitLoc l); l ↦∗ replicate (Z.to_nat n) v }]].
Amin Timany's avatar
Amin Timany committed
272 273 274 275 276
Proof.
  iIntros (Hn Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1 κs k) "[Hσ Hκs] !>"; iSplit; first by destruct n; auto with lia.
  iIntros (κ v2 σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_alloc_gen with "Hσ") as "[Hσ Hl]".
277
  { apply (heap_array_map_disjoint _ l (replicate (Z.to_nat n) v)); eauto.
Amin Timany's avatar
Amin Timany committed
278 279 280 281 282 283
    rewrite replicate_length Z2Nat.id; auto with lia. }
  iModIntro; iSplit; auto.
  iFrame; iSplit; auto. iApply "HΦ".
  by iApply heap_array_to_array.
Qed.

284 285
Lemma wp_alloc s E v :
  {{{ True }}} Alloc (Val v) @ s; E {{{ l, RET LitV (LitLoc l); l  v }}}.
286
Proof.
Amin Timany's avatar
Amin Timany committed
287 288 289 290 291
  iIntros (Φ) "_ HΦ".
  iApply wp_allocN; auto with lia.
  iNext; iIntros (l) "H".
  iApply "HΦ".
  by rewrite array_singleton.
292
Qed.
293 294
Lemma twp_alloc s E v :
  [[{ True }]] Alloc (Val v) @ s; E [[{ l, RET LitV (LitLoc l); l  v }]].
295
Proof.
Amin Timany's avatar
Amin Timany committed
296 297 298 299 300
  iIntros (Φ) "_ HΦ".
  iApply twp_allocN; auto with lia.
  iIntros (l) "H".
  iApply "HΦ".
  by rewrite array_singleton.
301
Qed.
302

303
Lemma wp_load s E l q v :
304
  {{{  l {q} v }}} Load (Val $ LitV $ LitLoc l) @ s; E {{{ RET v; l {q} v }}}.
305 306
Proof.
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
307
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
308
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
309 310
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
311
Lemma twp_load s E l q v :
312
  [[{ l {q} v }]] Load (Val $ LitV $ LitLoc l) @ s; E [[{ RET v; l {q} v }]].
313 314
Proof.
  iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
315
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
316
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
317
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
318
Qed.
319

320 321 322
Lemma wp_store s E l v' v :
  {{{  l  v' }}} Store (Val $ LitV (LitLoc l)) (Val v) @ s; E
  {{{ RET LitV LitUnit; l  v }}}.
323
Proof.
324
  iIntros (Φ) ">Hl HΦ".
325
  iApply wp_lift_atomic_head_step_no_fork; auto.
326
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
327
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
328
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
329
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
330
Qed.
331 332 333
Lemma twp_store s E l v' v :
  [[{ l  v' }]] Store (Val $ LitV $ LitLoc l) (Val v) @ s; E
  [[{ RET LitV LitUnit; l  v }]].
334
Proof.
335
  iIntros (Φ) "Hl HΦ".
336
  iApply twp_lift_atomic_head_step_no_fork; auto.
337
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
338
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
339
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
340
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
341
Qed.
342

343 344 345
Lemma wp_cas_fail s E l q v' v1 v2 :
  v'  v1  vals_cas_compare_safe v' v1 
  {{{  l {q} v' }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
346 347
  {{{ RET LitV (LitBool false); l {q} v' }}}.
Proof.
348
  iIntros (?? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
349
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
350
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
351 352
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
353 354 355
Lemma twp_cas_fail s E l q v' v1 v2 :
  v'  v1  vals_cas_compare_safe v' v1 
  [[{ l {q} v' }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
356 357
  [[{ RET LitV (LitBool false); l {q} v' }]].
Proof.
358
  iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
359
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
360 361
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
362
Qed.
363

364 365 366
Lemma wp_cas_suc s E l v1 v2 :
  vals_cas_compare_safe v1 v1 
  {{{  l  v1 }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
367 368
  {{{ RET LitV (LitBool true); l  v2 }}}.
Proof.
369
  iIntros (? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
370
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
371
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
372
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
373
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
374
Qed.
375 376 377
Lemma twp_cas_suc s E l v1 v2 :
  vals_cas_compare_safe v1 v1 
  [[{ l  v1 }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E
378 379
  [[{ RET LitV (LitBool true); l  v2 }]].
Proof.
380
  iIntros (? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
381
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
382
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
383
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
384
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
385
Qed.
386

387 388
Lemma wp_faa s E l i1 i2 :
  {{{  l  LitV (LitInt i1) }}} FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
389 390
  {{{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }}}.
Proof.
391
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
392
  iIntros (σ1 κ κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
393
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
394
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
395
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
396
Qed.
397 398
Lemma twp_faa s E l i1 i2 :
  [[{ l  LitV (LitInt i1) }]] FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E
399 400
  [[{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }]].
Proof.
401
  iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
402
  iIntros (σ1 κs n) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
403
  iSplit; first by eauto. iIntros (κ e2 σ2 efs Hstep); inv_head_step.
404
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
405
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
406
Qed.
407

408 409 410 411
Lemma wp_new_proph s E :
  {{{ True }}}
    NewProph @ s; E
  {{{ vs p, RET (LitV (LitProphecy p)); proph p vs }}}.
412 413
Proof.
  iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
414
  iIntros (σ1 κ κs n) "[Hσ HR] !>". iSplit; first by eauto.
415
  iNext; iIntros (v2 σ2 efs Hstep). inv_head_step.
416 417
  iMod (proph_map_new_proph p with "HR") as "[HR Hp]"; first done.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
418 419
Qed.

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
(* In the following, strong atomicity is required due to the fact that [e] must
be able to make a head step for [Resolve e _ _] not to be (head) stuck. *)

Lemma resolve_reducible e σ p v :
  Atomic StronglyAtomic e  reducible e σ 
  reducible (Resolve e (Val (LitV (LitProphecy p))) (Val v)) σ.
Proof.
  intros A (κ & e' & σ' & efs & H).
  exists (κ ++ [(p, (default v (to_val e'), v))]), e', σ', efs.
  eapply Ectx_step with (K:=[]); try done.
  assert (w, Val w = e') as [w <-].
  { unfold Atomic in A. apply (A σ e' κ σ' efs) in H. unfold is_Some in H.
    destruct H as [w H]. exists w. simpl in H. by apply (of_to_val _ _ H). }
  simpl. constructor. by apply prim_step_to_val_is_head_step.
Qed.

Lemma step_resolve e p v σ1 κ e2 σ2 efs :
  Atomic StronglyAtomic e 
  prim_step (Resolve e (Val p) (Val v)) σ1 κ e2 σ2 efs 
  head_step (Resolve e (Val p) (Val v)) σ1 κ e2 σ2 efs.
Proof.
  intros A [Ks e1' e2' Hfill -> step]. simpl in *.
  induction Ks as [|K Ks _] using rev_ind.
  + simpl in *. subst. inversion step. by constructor.
  + rewrite fill_app /= in Hfill. destruct K; inversion Hfill; subst; clear Hfill.
    - assert (fill_item K (fill Ks e1') = fill (Ks ++ [K]) e1') as Eq1;
        first by rewrite fill_app.
      assert (fill_item K (fill Ks e2') = fill (Ks ++ [K]) e2') as Eq2;
        first by rewrite fill_app.
      rewrite fill_app /=. rewrite Eq1 in A.
      assert (is_Some (to_val (fill (Ks ++ [K]) e2'))) as H.
      { apply (A σ1 _ κ σ2 efs). eapply Ectx_step with (K0 := Ks ++ [K]); done. }
      destruct H as [v H]. apply to_val_fill_some in H. by destruct H, Ks.
    - assert (to_val (fill Ks e1') = Some p); first by rewrite -H1 //.
      apply to_val_fill_some in H. destruct H as [-> ->]. inversion step.
    - assert (to_val (fill Ks e1') = Some v); first by rewrite -H2 //.
      apply to_val_fill_some in H. destruct H as [-> ->]. inversion step.
Qed.

Lemma wp_resolve s E e Φ p v vs :
  Atomic StronglyAtomic e 
  to_val e = None 
  proph p vs -
  WP e @ s; E {{ r,  vs', vs = (r, v)::vs' - proph p vs' - Φ r }} -
  WP Resolve e (Val $ LitV $ LitProphecy p) (Val v) @ s; E {{ Φ }}.
Proof.
  (* TODO we should try to use a generic lifting lemma (and avoid [wp_unfold])
     here, since this breaks the WP abstraction. *)
  iIntros (A He) "Hp WPe". rewrite !wp_unfold /wp_pre /= He. simpl in *.
469
  iIntros (σ1 κ κs n) "[Hσ Hκ]". destruct κ as [|[p' [w' v']] κ' _] using rev_ind.
470 471 472 473
  - iMod ("WPe" $! σ1 [] κs n with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
    { iDestruct "Hs" as "%". iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
    iIntros (e2 σ2 efs step). exfalso. apply step_resolve in step; last done.
    inversion step. match goal with H: ?κs ++ [_] = [] |- _ => by destruct κs end.
474
  - rewrite -app_assoc.
475
    iMod ("WPe" $! σ1 _ _ n with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
476
    { iDestruct "Hs" as %?. iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
477 478 479
    iIntros (e2 σ2 efs step). apply step_resolve in step; last done.
    inversion step; simplify_list_eq.
    iMod ("WPe" $! (Val w') σ2 efs with "[%]") as "WPe".
480
    { by eexists [] _ _. }
481 482 483
    iModIntro. iNext. iMod "WPe" as "[[$ Hκ] WPe]".
    iMod (proph_map_resolve_proph p' (w',v') κs with "[$Hκ $Hp]") as (vs' ->) "[$ HPost]".
    iModIntro. rewrite !wp_unfold /wp_pre /=. iDestruct "WPe" as "[HΦ $]".
484
    iMod "HΦ". iModIntro. by iApply "HΦ".
485 486
Qed.

487
Lemma wp_resolve_proph s E p vs v :
488
  {{{ proph p vs }}}
489
    ResolveProph (Val $ LitV $ LitProphecy p) (Val v) @ s; E
490
  {{{ vs', RET (LitV LitUnit); vs = (LitV LitUnit, v)::vs'  proph p vs' }}}.
491
Proof.
492
  iIntros (Φ) "Hp HΦ". iApply (wp_resolve with "Hp"); first done.
493 494
  iApply wp_pure_step_later=> //=. iApply wp_value.
  iIntros "!>" (vs') "HEq Hp". iApply "HΦ". iFrame.
495
Qed.
496

Ralf Jung's avatar
Ralf Jung committed
497
End lifting.