lifting.v 12.7 KB
Newer Older
1
From iris.algebra Require Import auth gmap.
2
From iris.base_logic Require Export gen_heap.
3 4
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import ectx_lifting total_ectx_lifting.
5
From iris.heap_lang Require Export lang proph_map.
6
From iris.heap_lang Require Import tactics.
7
From iris.proofmode Require Import tactics.
Ralf Jung's avatar
Ralf Jung committed
8
From stdpp Require Import fin_maps.
9
Set Default Proof Using "Type".
Ralf Jung's avatar
Ralf Jung committed
10

11 12
Class heapG Σ := HeapG {
  heapG_invG : invG Σ;
13
  heapG_gen_heapG :> gen_heapG loc val Σ;
14
  heapG_proph_mapG :> proph_mapG proph_id val Σ
15 16 17 18
}.

Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := {
  iris_invG := heapG_invG;
19
  state_interp σ κs :=
20
    (gen_heap_ctx σ.(heap)  proph_map_ctx κs σ.(used_proph_id))%I
21 22 23 24
}.

(** Override the notations so that scopes and coercions work out *)
Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V)
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  (at level 20, q at level 50, format "l  ↦{ q }  v") : bi_scope.
26
Notation "l ↦ v" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
27
  (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : bi_scope.
28
Notation "l ↦{ q } -" := ( v, l {q} v)%I
Robbert Krebbers's avatar
Robbert Krebbers committed
29 30
  (at level 20, q at level 50, format "l  ↦{ q }  -") : bi_scope.
Notation "l ↦ -" := (l {1} -)%I (at level 20) : bi_scope.
31

32 33 34 35 36 37 38 39 40
(** The tactic [inv_head_step] performs inversion on hypotheses of the shape
[head_step]. The tactic will discharge head-reductions starting from values, and
simplifies hypothesis related to conversions from and to values, and finite map
operations. This tactic is slightly ad-hoc and tuned for proving our lifting
lemmas. *)
Ltac inv_head_step :=
  repeat match goal with
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
41
  | H : head_step ?e _ _ _ _ _ |- _ =>
42 43 44 45 46
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

47
Local Hint Extern 0 (atomic _ _) => solve_atomic.
48 49
Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl.
Local Hint Extern 0 (head_reducible_no_obs _ _) => eexists _, _, _; simpl.
50

51 52 53 54 55
(* [simpl apply] is too stupid, so we need extern hints here. *)
Local Hint Extern 1 (head_step _ _ _ _ _ _) => econstructor.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasSucS.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasFailS.
Local Hint Extern 0 (head_step (Alloc _) _ _ _ _ _) => apply alloc_fresh.
56
Local Hint Extern 0 (head_step NewProph _ _ _ _ _) => apply new_proph_id_fresh.
57
Local Hint Resolve to_of_val.
58

Ralf Jung's avatar
fix TWP  
Ralf Jung committed
59
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
60
Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step.
61
Local Ltac solve_pure_exec :=
62 63
  unfold IntoVal in *;
  repeat match goal with H : AsVal _ |- _ => destruct H as [??] end; subst;
64 65
  intros ?; apply nsteps_once, pure_head_step_pure_step;
    constructor; [solve_exec_safe | solve_exec_puredet].
66

67 68
Class AsRec (e : expr) (f x : binder) (erec : expr) :=
  as_rec : e = Rec f x erec.
69 70
Instance AsRec_rec f x e : AsRec (Rec f x e) f x e := eq_refl.
Instance AsRec_rec_locked_val v f x e :
71 72 73
  AsRec (of_val v) f x e  AsRec (of_val (locked v)) f x e.
Proof. by unlock. Qed.

74
Instance pure_rec f x (erec e1 e2 : expr)
Robbert Krebbers's avatar
Robbert Krebbers committed
75
    `{!AsVal e2, AsRec e1 f x erec, Closed (f :b: x :b: []) erec} :
76
  PureExec True 1 (App e1 e2) (subst' x e2 (subst' f e1 erec)).
77
Proof. unfold AsRec in *; solve_pure_exec. Qed.
78

79
Instance pure_unop op e v v' `{!IntoVal e v} :
80
  PureExec (un_op_eval op v = Some v') 1 (UnOp op e) (of_val v').
81
Proof. solve_pure_exec. Qed.
82

83
Instance pure_binop op e1 e2 v1 v2 v' `{!IntoVal e1 v1, !IntoVal e2 v2} :
84
  PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op e1 e2) (of_val v').
85
Proof. solve_pure_exec. Qed.
86

87
Instance pure_if_true e1 e2 : PureExec True 1 (If (Lit (LitBool true)) e1 e2) e1.
88
Proof. solve_pure_exec. Qed.
89

90
Instance pure_if_false e1 e2 : PureExec True 1 (If (Lit (LitBool false)) e1 e2) e2.
91
Proof. solve_pure_exec. Qed.
92

93
Instance pure_fst e1 e2 v1 `{!IntoVal e1 v1, !AsVal e2} :
94
  PureExec True 1 (Fst (Pair e1 e2)) e1.
95
Proof. solve_pure_exec. Qed.
96

97
Instance pure_snd e1 e2 v2 `{!AsVal e1, !IntoVal e2 v2} :
98
  PureExec True 1 (Snd (Pair e1 e2)) e2.
99
Proof. solve_pure_exec. Qed.
100

101
Instance pure_case_inl e0 v e1 e2 `{!IntoVal e0 v} :
102
  PureExec True 1 (Case (InjL e0) e1 e2) (App e1 e0).
103
Proof. solve_pure_exec. Qed.
104

105
Instance pure_case_inr e0 v e1 e2 `{!IntoVal e0 v} :
106
  PureExec True 1 (Case (InjR e0) e1 e2) (App e2 e0).
107
Proof. solve_pure_exec. Qed.
108

109 110 111 112 113 114 115
Section lifting.
Context `{heapG Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
Implicit Types efs : list expr.
Implicit Types σ : state.

Ralf Jung's avatar
Ralf Jung committed
116
(** Fork: Not using Texan triples to avoid some unnecessary [True] *)
117
Lemma wp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
118
   WP e @ s;  {{ _, True }} -  Φ (LitV LitUnit) - WP Fork e @ s; E {{ Φ }}.
119
Proof.
Ralf Jung's avatar
Ralf Jung committed
120
  iIntros "He HΦ".
Ralf Jung's avatar
Ralf Jung committed
121
  iApply wp_lift_pure_det_head_step; [by eauto|intros; inv_head_step; by eauto|].
122 123
  iModIntro; iNext; iIntros "!> /= {$He}". by iApply wp_value.
Qed.
124

125
Lemma twp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
126
  WP e @ s;  [{ _, True }] - Φ (LitV LitUnit) - WP Fork e @ s; E [{ Φ }].
127
Proof.
Ralf Jung's avatar
Ralf Jung committed
128
  iIntros "He HΦ".
129
  iApply twp_lift_pure_det_head_step; [eauto|intros; inv_head_step; eauto|].
130 131 132
  iIntros "!> /= {$He}". by iApply twp_value.
Qed.

133
(** Heap *)
134
Lemma wp_alloc s E e v :
Robbert Krebbers's avatar
Robbert Krebbers committed
135
  IntoVal e v 
136
  {{{ True }}} Alloc e @ s; E {{{ l, RET LitV (LitLoc l); l  v }}}.
137
Proof.
138
  iIntros (<- Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
139 140
  iIntros (σ1 κ κs) "[Hσ Hκs] !>"; iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
141 142 143
  iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
144 145 146 147
Lemma twp_alloc s E e v :
  IntoVal e v 
  [[{ True }]] Alloc e @ s; E [[{ l, RET LitV (LitLoc l); l  v }]].
Proof.
148
  iIntros (<- Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
149
  iIntros (σ1 κs) "[Hσ Hκs] !>"; iSplit; first by eauto.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
150
  iIntros (κ v2 σ2 efs Hstep); inv_head_step.
151
  iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
152
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
153
Qed.
154

155 156
Lemma wp_load s E l q v :
  {{{  l {q} v }}} Load (Lit (LitLoc l)) @ s; E {{{ RET v; l {q} v }}}.
157 158
Proof.
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
159 160
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
161 162
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
163 164 165 166
Lemma twp_load s E l q v :
  [[{ l {q} v }]] Load (Lit (LitLoc l)) @ s; E [[{ RET v; l {q} v }]].
Proof.
  iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
167
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
168
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
169
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
170
Qed.
171

172
Lemma wp_store s E l v' e v :
Robbert Krebbers's avatar
Robbert Krebbers committed
173
  IntoVal e v 
174
  {{{  l  v' }}} Store (Lit (LitLoc l)) e @ s; E {{{ RET LitV LitUnit; l  v }}}.
175
Proof.
176
  iIntros (<- Φ) ">Hl HΦ".
177
  iApply wp_lift_atomic_head_step_no_fork; auto.
178 179
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
180
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
181
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
182
Qed.
183 184 185 186
Lemma twp_store s E l v' e v :
  IntoVal e v 
  [[{ l  v' }]] Store (Lit (LitLoc l)) e @ s; E [[{ RET LitV LitUnit; l  v }]].
Proof.
187
  iIntros (<- Φ) "Hl HΦ".
188
  iApply twp_lift_atomic_head_step_no_fork; auto.
189
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
190
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
191
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
192
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
193
Qed.
194

195
Lemma wp_cas_fail s E l q v' e1 v1 e2 :
Ralf Jung's avatar
Ralf Jung committed
196
  IntoVal e1 v1  AsVal e2  v'  v1  vals_cas_compare_safe v' v1 
197
  {{{  l {q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ s; E
198 199
  {{{ RET LitV (LitBool false); l {q} v' }}}.
Proof.
Ralf Jung's avatar
Ralf Jung committed
200
  iIntros (<- [v2 <-] ?? Φ) ">Hl HΦ".
201
  iApply wp_lift_atomic_head_step_no_fork; auto.
202 203
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
204 205
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
206
Lemma twp_cas_fail s E l q v' e1 v1 e2 :
Ralf Jung's avatar
Ralf Jung committed
207
  IntoVal e1 v1  AsVal e2  v'  v1  vals_cas_compare_safe v' v1 
208 209 210
  [[{ l {q} v' }]] CAS (Lit (LitLoc l)) e1 e2 @ s; E
  [[{ RET LitV (LitBool false); l {q} v' }]].
Proof.
Ralf Jung's avatar
Ralf Jung committed
211
  iIntros (<- [v2 <-] ?? Φ) "Hl HΦ".
212
  iApply twp_lift_atomic_head_step_no_fork; auto.
213
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
214 215
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
216
Qed.
217

218
Lemma wp_cas_suc s E l e1 v1 e2 v2 :
Ralf Jung's avatar
Ralf Jung committed
219
  IntoVal e1 v1  IntoVal e2 v2  vals_cas_compare_safe v1 v1 
220
  {{{  l  v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ s; E
221 222
  {{{ RET LitV (LitBool true); l  v2 }}}.
Proof.
Ralf Jung's avatar
Ralf Jung committed
223
  iIntros (<- <- ? Φ) ">Hl HΦ".
224
  iApply wp_lift_atomic_head_step_no_fork; auto.
225 226
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
227
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
228
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
229
Qed.
230
Lemma twp_cas_suc s E l e1 v1 e2 v2 :
Ralf Jung's avatar
Ralf Jung committed
231
  IntoVal e1 v1  IntoVal e2 v2  vals_cas_compare_safe v1 v1 
232 233 234
  [[{ l  v1 }]] CAS (Lit (LitLoc l)) e1 e2 @ s; E
  [[{ RET LitV (LitBool true); l  v2 }]].
Proof.
Ralf Jung's avatar
Ralf Jung committed
235
  iIntros (<- <- ? Φ) "Hl HΦ".
236
  iApply twp_lift_atomic_head_step_no_fork; auto.
237
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
238
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
239
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
240
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
241
Qed.
242

Ralf Jung's avatar
Ralf Jung committed
243
Lemma wp_faa s E l i1 e2 i2 :
244
  IntoVal e2 (LitV (LitInt i2)) 
Ralf Jung's avatar
Ralf Jung committed
245
  {{{  l  LitV (LitInt i1) }}} FAA (Lit (LitLoc l)) e2 @ s; E
246 247
  {{{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }}}.
Proof.
248
  iIntros (<- Φ) ">Hl HΦ".
249
  iApply wp_lift_atomic_head_step_no_fork; auto.
250 251
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
252
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
253
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
254
Qed.
255 256 257 258 259
Lemma twp_faa s E l i1 e2 i2 :
  IntoVal e2 (LitV (LitInt i2)) 
  [[{ l  LitV (LitInt i1) }]] FAA (Lit (LitLoc l)) e2 @ s; E
  [[{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }]].
Proof.
260
  iIntros (<- Φ) "Hl HΦ".
261
  iApply twp_lift_atomic_head_step_no_fork; auto.
262
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
263
  iSplit; first by eauto. iIntros (κ e2 σ2 efs Hstep); inv_head_step.
264
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
265
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
266
Qed.
267 268 269

(** Lifting lemmas for creating and resolving prophecy variables *)
Lemma wp_new_proph :
270
  {{{ True }}} NewProph {{{ v (p : proph_id), RET (LitV (LitProphecy p)); proph p v }}}.
271 272
Proof.
  iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
273 274 275 276
  iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR".
  iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep). inv_head_step.
  iMod (@proph_map_alloc with "HR") as "[HR Hp]".
277 278 279 280 281 282
  { intro Hin. apply (iffLR (elem_of_subseteq _ _) Hdom) in Hin. done. }
  iModIntro; iSplit=> //. iFrame. iSplitL "HR".
  - iExists _. iSplit; last done.
    iPureIntro. split.
    + apply first_resolve_insert; auto.
    + rewrite dom_insert_L. by apply union_mono_l.
Ralf Jung's avatar
Ralf Jung committed
283
  - iApply "HΦ". done.
284 285 286 287 288
Qed.

Lemma wp_resolve_proph e1 e2 p v w:
  IntoVal e1 (LitV (LitProphecy p)) 
  IntoVal e2 w 
289
  {{{ proph p v }}} ResolveProph e1 e2 {{{ RET (LitV LitUnit); v = Some w }}}.
290 291
Proof.
  iIntros (<- <- Φ) "Hp HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
292 293 294 295
  iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR".
  iDestruct (@proph_map_valid with "HR Hp") as %Hlookup.
  iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iApply fupd_frame_l.
296
  iSplit=> //. iFrame.
Ralf Jung's avatar
Ralf Jung committed
297
  iMod (@proph_map_remove with "HR Hp") as "Hp". iModIntro.
298 299 300 301 302 303
  iSplitR "HΦ".
  - iExists _. iFrame. iPureIntro. split; first by eapply first_resolve_delete.
    rewrite dom_delete. rewrite <- difference_empty_L. by eapply difference_mono.
  - iApply "HΦ". iPureIntro. by eapply first_resolve_eq.
Qed.

Ralf Jung's avatar
Ralf Jung committed
304
End lifting.